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ABSTRAC'F

A new robust identification method is developed for use in an adaptive control system. The
new type of estimator is called the robust estimator, since it is robust to the effects of both

unmodeled dynamics and an unmeasurable disturbance. The development of the robust estimator
as motivated by a need to provide guarantees in the identification part of an adaptive controller.
o enable the design of a robust control system, a nominal model as well as a frequency-domain

bounding function on the modeling uncertainty associated with this nominal model must be
provided. The results of this thesis provide this information.

Two estimation methods are presented for finding parameter estimates and, hence, a nominal
model. One of these methods is based on the well developed field of time-domain parameter
estimation. In a second method of finding parameter estimates, a type of weighted least-squares
fitting to a frequency-domain estimated model is used. The frequency-domain estimator is shown
to perform better, in general, than the time-domain parameter estimator. In addition, a new
methodology for finding a frequency-domain bounding function on the modeling uncertainty is
presented. A frequency-domain bounding function on the disturbance is used to compute a
frequency-domain bounding function on the additive modeling error due to the effects of the
disturbance and the use of finite-length data.

The performance of the robust estimator in both open-loop and closed-loop situations is
examined through the use of simulations. The excitation conditions for the robust estimator, and
the issues concerning the introduction of a probing signal in a closed-loop context, are also
analyzed in the thesis.
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CHAPTER 1.

INTRODUCTION

1.1 Overview

1.1.1 Motivation

The use of feedback control in systems having large amounts of uncertainty requires the use

of algorithms that learn or adapt in an on-line situation. A control system that is designed using

only a priori knowledge results in a relatively low bandwidth closed-loop system so as to guarantee

stable operation in the face of large uncertainty. An adaptive control algorithm, which can identify

the plant on-line, thereby decreasing the amount of plant uncertainty, can yield a closed-loop

system that has a reduced sensitivity function, higher bandwidth and thus better performance than a

non-adaptive algorithm. There are many problems with the adaptive control algorithms that have

been developed, to date. In particular, most adaptive control algorithms available are not robust to

unmodeled dynamics and unmeasurable disturbances, particularly in the absence of a

persistently-exciting input signal.

In this thesis, we develop and test a set of plant identification algorithms which can be used

with confidence in an adaptive control setting. We attempt to improve performance, while

providing ironclad guarantees that the closed-loop system remains stable in the presence of

high-frequency modeling errors and disturbances. As we shall see, such stability guararitees have a

price; extensive real-time calculations in the frequency-domain are required.

In this subsection, we will motivate the robust estimation problem by first discussing the

adaptive control problem, in general, and then presenting a perspective _)n the robust adaptive

control problem. Further, we justify the choice of an infrequent adaptation strategy before

discussing the main focus of the thesis, the development of a robust estimator.

The Adaptive Control Problem

The adaptive control problem has received considerable attention during the past thirty years.

However, while many different algorithms and analysis methods have been developed, a pragmatic

adaptive control design methodology has not, as yet, been developed. The primary difficulty with

current adaptive control algorithms is that they make restrictive (non-practical) assumptions about

the plant. In addition, these algorithms often assume that the system operates in an ideal

environment. Recent research efforts have focused both on reducing the restrictiveness of the plant

assumptions, as well as the issue of robustness to unmodeled dynamics and unmeasurable
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disturbances.However,analgorithmthatrequiresreasonableapriori information about the plant,

and that can provide guarantees of global stability in the absence of persistent excitation and in the

face of reasonable classes of unmodeled dynamics and unmeasurable disturbances, is still an

unreached goal. Although many researchers have suggested "safety nets" for specific applications,

a general "safety net" methodology is not available. This thesis represents a contribution in that

direction.

$_ability of Adaptive Control Algorithms

The use of current adaptive control algorithms yields systems that are nonlinear and possibly

time-varying. Thus, the closed-loop stability of these systems depends on the inputs and

disturbances, as well as the plant (including any unmodeled dynamics) and the compensator.

However, the stability properties of a linear time-invariant (LTI) feedback system depend only on

the plant and compensator, not the inputs and disturbances. Because of this fact, we take the point

of view that it is desirable to make the system "as LTI as possible". Of course, our motivation for

using adaptive control is to achieve a performance improvement (increased bandwidth) over the

best non-adaptive LTI compensator. So, there is the ever present tradeoff between performance "

and robustness.

The preceding argument can be used to justify an infrequent control-law update strategy. It

is envisioned that a discrete-time estimator (identifier) will be used to continually update the

estimates of the plant as long as there is useful information in the input/output data of the plant.

The continuous-time plant is in a closed-loop that is controlled by a fixed-structure, discrete-time

compensator whose parameters are updated infrequently. It can be shown that, if the compensator

parameters are updated sufficiently infrequently, then the LTI stability of the frozen-time system at

every point in time guarantees the exponential stability of the time-varying system. In this way, the

control system looks nearly LTI and consequently is more robust to disturbances, than a highly

nonlinear adaptive controller. It is emphasized here that a robust adaptive controller that slowly

learns and produces successively better LTI compensators is the end product envisioned in this

thesis. The work presented in this thesis alms to develop only the estimation part of this robust

adaptive controller. On the other end of the adaptive control spectrum are algorithms that quickly

adapt to a changing system. However, these systems have poor robustness properties in that they

are highly sensitive to unmodeled dynamics and unmeasurable disturbances, particularly in the

absence of persistent excitation.



ChapterI Page22

A PersPective on the Robust Adaptiv_ (_onlro1 Pr0bl_m

With the solution of the adaptive control problem for the ideal case, that is, when there are no

unmodeled dynamics nor unmeasurable disturbances, the problem of robustness has become a

focus of current research. Recently, a new perspective on the robust adaptive control problem has

appeared in the literature [1]. Briefly, a "robust" adaptive controller is viewed as a combination of

a "robust" parameter estimator and a "robust" control law. Indeed, researchers have coined the

term "adaptive robust control" to emphasize this new perspective. This is an appealing point of

view. For example, if the robust parameter estimator is not getting any useful information and,

consequently, is not able to improve on the current knowledge of the plant parameters, then the

adaptation aspect of the algorithm can be disabled and the adaptive controller reduces to a robust

control law. That is, in a situation where the adaptive algorithm is not learning, the adaptive

controller becomes simply the best robust LTI control law that one could design based only on a

priori information and any additional information learned since the algorithm began. As an aside

we mention the fact that currently the control field doesn't provide a method for designing the

best-performing, robustly-stable, LTI control law in the face of uncertainty. A second benefit of

the new adaptive control perspective is that it, like all indirect adaptive control approaches, enables

us to view the adaptive control problem as having two parts, the parameter estimator and the control

law. Alternatively, the direct adaptive control approaches combine the estimation and control-law

design aspects of the problem. That is, in the direct approach the control law parameters are

estimated directly instead of first estimating the plant and then computing the new control law

parameters as is done in the indirect approach. Since we use the indirect approach in this thesis, we

will able to use previous results in the fields of parameter estimation and robust control. The field

of LTI control is well established for questions of stability robustness and offers several possible

robust control algorithms for use in an adaptive controller. However, the problem of robust

estimation (identification) has received less attention by researchers. This area of robust

identification is where the thesis makes its main contribution.

Brief Statement of the Robusl; Estimation Problem

The main focus of this thesis is the development of a robust estimator for use in an adaptive

control system. In non-adaptive robust control, the designer must perform two identification steps;

he must obtain both a nominal model and some measure of its goodness. A useful measure of

goodness is a frequency-domain bounding function on the modeling errors as this permits the use

of frequency-domain stability robustness tests. Now, since non-adaptive robust control requires



Chapter1 • Page23

bothof theabovesteps,the same steps must implicitly, or explicitly, be present in a robust adaptive

control scheme, the difference being that the steps are carried out on-line rather than off-line. Thus,

we assume that our robust estimator must supply:

1) a nominal plant model,

2) a bounding function on the magnitude of the modeling error vs. frequency of this nominal

model with respect to the true plant.

So, given an a priori assumed model structure, the robust estimator must provide an estimate of the

parameters of the plant, as well as a frequency-domain error bounding function corresponding to

this estimate. That is, we define a robust estimator as one that generates a model of the plant along

with guarantees about how good the model is. Given this information, several robust control-law

design methodologies could be used. This adaptive control scenario is shown in Figure 1.1.

In this thesis, we present two methodologies for estimating the parameters of the nominal

model, one based on time-domain methods and one based on frequency-domain methods. In

addition, we will present one method for computing a frequency-domain bounding function on the

modeling uncertainty. It will be shown in the simulations that the specific time-domain parameter

estimator that is described in this thesis has some weaknesses. Thus, frequency-domain methods

will be used to provide both parameter estimates and the aforementioned frequency-domain

bounding function on the modeling uncertainty. The frequency-domain calculations of these

methods require significant real-time computations.
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Figure 1. h Robust Adaptive Control System.
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Thegoalof the robust estimator is to enable improved closed-loop performance through the

reduction of the modeling uncertainty. The modeling error or uncertainty has two components: 1)

an unstructured component due to the modeling mismatch error between the finite-dimensional

plant model and the plant, and 2) a structured component due to errors in the parameters of the

nominal model. The function of the robust estimator is to eliminate the structured uncertainty of the

plant model. That is, the robust estimator seeks to yield a better performing closed-loop system by

reducing the structured uncertainty. The robust estimator will be of most use in situations where

there is significant structured uncertainty. We do not require the robust estimator to eliminate the

inherent unstructured uncertainty due to high-frequency unmodeled dynamics. The role of the

robust estimator is illustrated in Figure 1.2.
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Figure 1.2: The Role of the Robust Estimator.
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1,1,2 Contributions of the Thesis

The resuks of this thesis represent a major step toward a more complete understanding of the

robust adaptive control problem. The primary technical contributions are in the area of robust

estimation (identification), however, the thesis provides insight as to the future of robust adaptive

control. We now discuss the novel features of the robust estimator and then summarize some of

the contributions of the thesis.

The robust estimator is the first of its kind in that it provides frequency-domain guarantees

concerning the accuracy of the nominal plant model. The author is not aware of any other

algorithm that provides these frequency-domain guarantees. As was mentioned earlier, we use a

frequency-domain bound on the modeling errors since this allows us to use existing stability

robustness results. We emphasize that the identification part of an adaptive controller must provide

some kind of guarantee concerning the nominal model, or else the resulting control-law cannot

guarantee the stability of the closed-loop system. We will use a deterministic framework

throughout th_ thesis since guarantees of stability are sought.

The key technical contribution of the thesis is the development of new signal processing

theorems that enable the explicit bounding of frequency-domain estimation errors due to the use of

finite-length data. These theorems are essential for the on-line computation of guaranteed bounds

on the modeling uncertainty. The robust estimator uses discrete Fourier transforms (DFTs) to

compute a frequency-domain estimate of the plant and then uses these signal processing theorems

to compute the required frequency-domain bounding function.

In contrast to some current adaptive control algorithms, the robust estimator uses pragmatic

assumptions concerning the a priori known information about the plant. Specifically, in practice,

engineers are generally able to determine the following:

a) the structure of the (low-frequency) nominal model,

b) an approximate idea of the parameters of the nominal model,

c) a frequency-domain bounding function on the size of the unmodeled dynamics, (i.e. a

magnitude bounding function on the Fourier transform),

d) an approximate idea of how smooth the unmodeled dynamics are in the frequency-domain,

e) a frequency-domain bounding function on the magnitude of the Fourier transform of the

unmeasurable disturbance (i.e. where the disturbance has its energy), and

f) a coarse bounding function on the impulse response of the plant, and coarse time-domain

magnitude bounds on both the unmeasurable disturbance and the input signal.

The development of the robust estimator assumes that the plant is stable, so the impulse response of

f) above is bounded. The robust estimator uses the above information and blends it with the

information gleaned on-line from the input/output data. It is the f'trst such estimator to use a priori
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frequency-domaininformationabout the unmodeled dynamics. The above continuous-time

assumptions are translated to an analogous set of discrete-time assumptions. The robust estimation

problem is then stated and solved in discrete-time. All on-line frequency-domain calculations are

computed using DFTs.

The development of the robust estimator entailed the study of techniques for robust

time-domain parameter estimation. Some time-domain bounding results are developed in the thesis

so that we can robustify a time-domain parameter estimator. This is done through the use of a

time-varying dead-zone. It will later be shown that this type of robust time-domain parameter

estimator performs unsatisfactorily. This poor performance motivates our development of a

frequency-domain parameter estimator which is found to perform much better than the time-varying

dead-zone approach.

Further contributions of this thesis are the insights gained concerning the closed-loop

operation of an adaptive system that uses the robust estimator. A simple adaptive control system

that uses the robust estimator is developed for a limited class of plants. The simulation of this

simple adaptive control system allows us to assess the potential of the robust estimator. In

addition, in this thesis we consider the inti'oduction of probing signals into the closed'loop system.

The robust adaptive control system that is shown in Figure 1.1, is essentially a passive system in

that it only learns and, hence, updates the compensator parameters when there is useful information

available to it, in the form of a rich control input signal. If it is essential that the robust adaptive

controller improve on its a priori information and the control input signal is not rich, in the sense

that the robust estimator cannot improve its estimate, then an external probing signal must be

introduced at the plant input to enhance identification. That is, in some closed-loop situations it will

be necessary to add a probing signal so that identification can occur. We analyze the excitation

conditions that are required by a robust adaptive control system that uses the robust estimator. This

enables us to devise a probing signal strategy that can be used to attain a target closed-loop

bandwidth.

The simulation results of this thesis suggest that the robust estimator (using the

frequency-domain parameter estimator) can provide performance improving information to the

control-law under reasonable excitation conditions. The cost of this improved closed-loop

performance with stability-robustness guarantees is the extensive real-time calculations of the

robust estimator.

1.1.3 Organization of the Thesis

The thesis is organized into ten chapters and several appendices. Figure 1.3 illustrates the

logical interdependence of the various chapters with the exception of the introductory and
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concludingchapters.In Chapter2 wepresentthenotationthatwill beusedthroughoutthethesis.

In addition,this chaptercontainsderivationsof severalnew signalprocessingtheoremsthatwill be

usedin thelaterpartsof thethesis.Thestatementof therobustestimationproblemispresentedin

Chapter3wheretheassumptionsof therobustestimatorarefirst statedin continuous-timeandthen

usedto formananalogoussetof discrete-timeassumptions.Chapter4 presentsarobust

time-domainparameterestimatorwhileChapter5presentsafrequency-domainbasedmethodof

findingparameterestimatesaswell asafrequency-domainmethodfor boundingmodeling
uncertainty.Chapter6 addressesthemanydesignissuesof therobustestimatorin thecontextof

closed-loopadaptivecontrol. In addition,Chapter6 investigateshowtheassumptionof a

frequency-domainboundingfunctioncanor cannotbesatisfiedby variousdisturbancemodels.

Computationalissuesarealsodiscussedin Chapter6. Chapter7 tiestogethertheresultsof the

previouschaptersby presentingarobustadaptivecontrolsystem,which usestherobustestimator,

andthatcanbeappliedto arestrictedclassof plants. Chapters8 and9 provideatwo part

presentationof severalillustrativesimulationexamples.In particular,weprovideaclosed-loop

simulationexamplethatdemonstratesthepotentialof adaptivecontrollersthatusetherobust

estimator.Finally, Chapter10presentsconclusionsanddirectionsfor futureresearch.The

appendicescontainusefulresultsthatarereferenced,asneeded,in themainbodyof thethesis
itself.
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1.2 Previous Work and Related Literature

1,2,1 R01_u_ Adaptive Control

During the late 1970s, global stability results for Model Reference Adaptive Controllers

(MRAC), in the absence of unmodeled dynamics and unmeasurable disturbances, were derived by

Narendra and Valavani [3], Narendra, Lin and Valavani [4], and Feuer and Morse [5]. These

results made several restrictive assumptions concerning the plant. It was assumed that the SISO

plant was: 1) minimum phase, 2) of known relative degree, 3) of known sign on high-frequency

gain, 4) of known maximum order, and 5) of known upper bound on the high-frequency gain.

These assumptions were necessary in order to prove global asymptotic stability of the

continuous-time adaptive control algorithms. A different adaptive control approach, the

Self-Tuning Regulator (STR) was developed by Astrom et al. [6,7] for discrete-time systems.

Stability results were not developed for the STR algorithms as they were derived in a stochastic

framework; rather, convergence properties were later shown to be true. A third approach was

pursued by Goodwin, Ramadge and Caines [8] who presented an algorithm and stability proof of a

projection-type adaptive controller for discrete-time systems. As in the MRAC case, unmodeled

dynamics and unmeasurable disturbances were not considered. In addition, the STR and

projection-type algorithms both make restrictive assumptions about the plant as in the MRAC case.

In the early '80s it became apparent with the work of Rohrs et al. [9,10] that there were

robustness problems with all of the previously developed adaptive control algorithms. These

problems stemmed from the nonlinear nature of the adaptive control problem and were different

than the stabilty-robustness problems encountered in the design of LTI compensators. Rohrs et al.

[9,10] showed that the presence of unmodeled dynamics and unmeasurable disturbances would

cause the current adaptive algorithms to become unstable when a persistendy-exciting input signal

was absent. This realization initiated investigations into the development of robust adaptive control

algorithms.

In recent years, several different approaches to the robust adaptive control problem have been

pursued. In 1982, Ioannou and Kokotovic [ 11] introduced the use of an exponential forgetting

factor to achieve a measure of robustness in adaptive control systems. At about the same time,

Peterson and Narendra [12] incorporated a fixed dead-zone mechanism into a continuous-time

MRAC and proved that the system was globally stable in the presence of a bounded, unmeasurable

disturbance. When the output error of Peterson and Narendra's algorithm was less than the error

that might be due to the bounded disturbance, the adaptation mechanism was disabled. They did

not consider the effects of unmodeled dynamics. This fixed dead-zone mechanism for intermittent

adaptation has also been used in discrete-time systems [13]. While a fixed dead-zone is useful for
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obtaining robustness with respect to a bounded disturbance, it cannot be used to provide robustness

to unmodeled dynamics. This is because the output error due to the unmodeled dynamics cannot be

absolutely bounded but, rather, depends on the size of the states of the plant. Thus, a time-varying

deadzone which depends on the plant states (or alternatively the plant inputs and outputs) must be

included in the system to provide robustness to both unmodeled dynamics and unmeasurable

disturbances.

In 1984, Orlicki et al. [14,15] incorporated a time-varying dead-zone into a continuous-time

MRAC and proved that the system was simultaneously robust to both unmodeled dynamics and

certain classes of disturbances, including bounded disturbances. Orlicki's algorithm implicitly

assumed that the plant was open-loop stable. He used on-line spectral calculations of the plant

input and output to determine when useful information was available for the adaptation algorithm.

Recently, Kreisselmeier and Anderson [16] introduced what they call a "relative dead-zone" to

provide robustness to unmodeled dynamics in discrete-time MRACs. The system is permitted to

adapt unless the error due to the unmodeled dynamics is larger than the current output error. They

bound the output error due to unmodeled dynamics using a stable difference equation driven by a

weighted sum of the current plant input and output. Goodwin et al. [17,18] have extended this

work to include the treatment of both unmodeled dynamics and bounded disturbances, by adding a

fixed component to the dead-zone of Kreisselmeier and Anderson to account for a bounded

disturbance. In addition, this new type of time-varying dead-zone is used by Goodwin et al.

[17,18] in a modified least-squares algorithm. This new modified least-squares algorithm will be

used in this thesis. However, we will use on-line spectral calculations to bound the output error

due to unmodeled dynamics, rather than Kreisselmeier and Anderson's bounding mechanism.

A different approach to the robust adaptive control problem advocates the use of the basic

ideal-case adaptive control algorithms in combination with a supervisory level, which is added to

the algorithm. Such a supervisory level provides a type of "safety net" that can detect the

conditions under which an adaptive control algorithm has problems, such as lack of excitation.

When these conditions are detected the adaptive algorithm is temporarily disabled so as to avoid

degradation of the parameter estimates and, hence, possibly unstable behavior. Both Astrom [19],

and Isermann and Lachmann [20] have suggested this kind of approach. These supervisory type

algorithms are ad-hoc and have not been shown to provide "safety nets" that guarantee stability. In

a sense, the results of this thesis represent a kind of"safety net" in that the robust estimator based

adaptive controller of this thesis seeks to achieve the same type of goals. That is, the robust

estimator doesn't update the plant parameters and, hence, the control-law doesn't change when

there is not any useful information in the input/output data.

A last result from the robust adaptive control area that will be used in the thesis is the recent

work of Rohrs et al. [21,22]. In 1985, Rohrs et al. showed an approximate relationship between
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theunmodeleddynamicsof a continuous-time plant and the unmodeled dynamics of a discrete-time

model of the plant. This relationship gives insight as to how to choose the sampling period in a

sampled-data adaptive control system so as to avoid the deleterious effects of the high-frequency

unmodeled dynamics. This result is used in the thesis to translate the continuous-time assumptions

of the robust estimator to an analogous set of discrete-time assumptions.

1.2.2 Parameter Estimation

The thesis will use several results from the field of parameter estimation. Young [23]

provides a thorough survey of this field up to 1980. As has already been mentioned in the

preceding subsection, time-domain parameter estimators such as the least-squares algorithm will be

used. Goodwin and Sin [13] provide a good summary of projection and least-squares type

parameter estimators. In addition to time-domain estimation techniques, we will be using

frequency-domain estimation techniques. Ljung and Glover [24] discuss the complementary nature

of time and frequency-domain estimation techniques. In Ljung [25,26] the "erfipirical transfer

function estimate" (ETFE) is introduced. This ETFE is computed using the Fourier transforms of

finite-length input/output data of the plant. In [25], Ljung finds bounds on the effects of using

f'mite-length data to compute the ETFE, for strictly stable plants. The extensive work of Ljung

provides the background for the development of the frequency-domain estimation techniques of this

thesis. The area of closed-loop identification is surveyed in the 1977 paper by Gustavsson, Ljung

and Soderstrom [27].

1.2.3 Signal Processing and Sampled-data Control

To implement the various spectral calculations involved in our robust estimator, we will have

to make use of some results from the signal processing field. Most of the needed results are

well-known and are contained in the books by Oppenheim and Schafer [28], and Rabiner and Gold

[29]. We will also make use of many results from the area of sampled-data control. In particular,

the books by Franklin and PoweU [30], Astrom and Wittenmark [31], and Ackermann [32] will be

used.
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CHAPTER 2.

MATHEMATICAL PRELIMINARIES

In this chapter, we will present the notation and definitions that will be used in the thesis as

well as some results and theorems that will be useful later on. Specifically, we will present

theorems that will enable us to bound the error due to using finite-length data in our computation of

frequency-domain estimates.

2.1 Preliminaries and Notation

2.1.1 Notation

In this subsection, we present some definitions. The following notation will be used to

represent various transforms of the signal x. We denote a continuous-time signal by x(t). The

Laplace and Fourier transforms of x(t) are denoted by XC(s) and XCf.jco), respectively, where the

superscript 'c' denotes the fact that they are transforms of a continuous-time signal. We denote the

time-sampled version of the continuous-time signal x(t) by the discrete-time signal x[n] where n is

an integer and x[n]=x(nT) where T is the sampling period. The z-transform of the discrete-time

signal x[n] is defined by

X(z) = _ x[nlz'n =.Z{x[n]}.

n_-oo

(2.1.1)

The z-transform of x[n] on the unit circle is called the discrete-time Fourier transform (DTFT) and

is defined as follows

OCt

X(e jc°T) = _ x[n] e-J(c°T) n. (2.1.2)

n_-oo

We def'me WN=e'J(2_/N) where N is a positive integer. (2.1.3)

This allows us to define the N-point discrete Fourier transform (DFT) of x[n], at the N frequency

points,

¢.ok = (k/N) COs, for k = 0 ..... N-1, (2.1.4)

where COs=2_/T is the sampling frequency. We denote the N-point DFT by
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XN(rX_k)-- FN{x[n] } Ik=o_N/O}s

N-1

Xs(C0k) = _ x[n] WN kn

n--0

where k is an integer and

fork=0, .... N-1.

Further, we define the inverse N-point discrete Fourier transform of XN(C0k) as follows,

(2.1.5)

x[n] = F'IN{ XN(O} k) } where

N-1

x[n] = 1 _ XN(Q_ k) WN "kn for n = 0 ..... N-1 (2.1.6)
N k----0

Since we will not always be working with N-point sequences that begin at 0, we define the

following version of the DFT and inverse DFT for a sequence of N points ending with time index

no

Xsn(ok) = Fsn{ x[n] }

n

Ik : _ x[m] WN km=r._N/m m=n-N+l

fork=0,...,N-1

(2.1.7)

x[m] = F-1Nn{ XNn(Ok) } =

N-1

1X
N k--0

XNn(a,_k) WN -km

for m = n-N+ 1..... n.

(2.1.8)

A useful recursive equation for computing XNn(Ok) from XN n- 1(o_) can be derived from the

above definitions and is given as follows

XNn(o_k) = XNn-l(o_k) + (x[n]-x[n-N])WN kn, fork=0 .... ,N-1. (2.1.9)

We will now derive a simpler version of Eqn. (2.1.9) to yield a recursion that doesn't have WN kn

as a multiplier. Define the spectrum of N-points of x[n] by
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n

m=n-N+ 1
= XNn(ct_k) WN -kn (2.1.10)

fork -0 ..... N-1.

Thus, the spectrum of x[n] and its DFT, as defined in Eqn. (2.1.7), have the same magnitude.

Now, using Eqn. (2.1.9) we can show that

XNn(Cok ) - XNn-I(a,,k)WN "k + (x[n]-x[n-N]), fork=0,...,N-1.

See Rabiner and Gold [29, p.387] for more details.

(2.1.11)

2.1.2 Sampling of Continu0us-time Simaal_

In this subsection, we show the relationships between: 1) the Fourier transform of a

continuous-time signal x(t); 2) the DTF'r of the corresponding discrete-time signal x[n] resulting

from the sampling of x(t); and 3) the DFT of x[n]. Further, we note some special cases of these

relationships.

The DTFr of x[n] can be.found from the Fourier transform of x(t) as follows

W 1.-=_..oo

(2.1.12)

where r is an integer and again ms is the sampling freqjaency. If we assume that xC0o_) is

bandlimited to the range -(C0s/2) < ¢.0< (Ols/2), then

X(e j°_T) = (l/T) XCfj_). (2.1.13)

If x[n] is of finite duration, for example if x[n]e0 only for n=0 .... N-1, then the N-point

DFT of x[n] and the DTFT of x[n] are equal at o_k,

XN(O)k) -- x(eJ °_T) [ for k = 0 .... N-1.
I co=o_"k

However, consider the infinite-length signal y[n] and the f'mite-length signal yfl[n] defined as

(2.1.14)

yfl[n] = y[n], for n -- 0,.., N-1

0, otherwise

(2.1.15)
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We canwrite

yfl[n] =

where

w[n] y[n] (2.1.16)

[
w[n] = _ 1, forn=0 .... N-1

{0, otherwise.

It can be shown that the DTFT of win] is

w(eJtaT) = e-JCoT((N-1)/2) sin(taTN/2) / sin(c0T/2).

The well-known relationship between the DTFTs of yfl[n]-and y[n] follows.

Schafer [28, p.239] for details.

x/T

Yfl(eJ t-°T) = (T/2_) J Y(eJ '°T) W(eJ(t'°'°)T) dt_.

-rCI"

(2.1.17)

(2.1.18)

See Oppenheim and

(2.1.19)

Finally, since the DTFT and the N-point DFT of yfl[n] are equal at tx_k, we find that

r,/T

YN(tak) - (T/2_) I Y(e j'°T) W(eJ(C°k "_)T) da_, for k = 0 .... N-1. (2.1.20)

-g/T

In summary, we have shown how to compute the DFT of a sampled signal given the Fourier

transform of the infinite-length, continuous-time signal from which the sampled signal was

derived. First, Eqn. (2.1.12) is used to compute the DTFT of the sampled signal from the Fourier

transform, and then Eqn. (2.1.20) is used to compute the DFT from the DTFT.

2.2 Signal Processing Theorems

In this section, we will develop new results that can be used to bound the effects of using

finite-length data to compute frequency-domain quantities. Later, in Section 5.2, the

frequency-domain estimate of a stable, causal, transfer function H(e je°T) will be computed based

on the N-point DFTs of the transfer function input and output signals. We will now derive a new

theorem that can be used to bound the error in the frequency domain between this DFT derived

frequency-domain estimate and the true transfer function.
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Theorem 2.1: Let y[m] = h[m],u[m], where h[m] is an infinite-length, causal, impulse response

with all its poles in the open unit disk. We denote the DTFT of him] by H(eJ°T); and the Db-Ts of

the N-points of u[m] and y[m] ending with time index n, by UNn(o_) and YNn(o_k), respectively.

Then,

YNn(C0k ) = H(eJ°k T) UNn(o k) + ENn(Ok),

where the discrete function ENn(_k) is given by

=
p-I

fork =0 .... N-l,

h[p] WNkP ( UNn-P(C0k )- UNn(e.Ok) ), for k=0,.. ,N-l,

(2.2.1)

(2.2.2)

where W N is defined in Eqn. (2.1.3).

Remark 1: The function ENn(Cok) is the error in the frequency domain, at time index n, due to the

use of finite-length data. That is, if the DTFrs (based on infinite-length data) of u[m] and y[m]

were used in Eqn. (2.2.1) instead of the DFTs (based on f'mite-length data), then there would be no

error term ENn(Ok). Note that the function ENn(%) /UNn(%) is the error in the frequency

domain between the DFT derived frequency-domain estimate of H(eJe'°k T) and the true transfer

function H(eJC°kT).

We know that

Y(eJOk T) = H(eJr°k T) U(d°kT), for k =0 .... N-l,

where U(eJ°)k T) and Y(eJ°)k T) are the DTFTs of u[n] and y[n], respectively. Since

n-N **

Y(eJr'°kT) = Z y[m] WNkm + YNn(Wk) + Z y[m] WNkm,
m=-** m=n+ 1

for k = 0 .... N-l,

and a similar expression holds for U(eJ°_kT), we can write

(2.2.3)

(2.2.4)
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n-N

y_(_) =n(eJ0,kT)[ Y__,otto]W_,_+U_(_)
m=-_

+ _ u[m] WN km

m=n+ 1

n-N

ytm] WN km +

m=-oo

y[m] WN km ]

m=n+l

for k = 0,.., N- 1.

It can be shown that

n-N

y[m] WN km = h[0] {

n-N

u[m] WN km }
m=-oo

oo

+ Z h[p] wNkP
p=l

So, we can show that

n-N

n-N

{ Z u[m]WN_
_mm

H(cJmk T) Z utm]WN km

m_-oo

n-N

n-N

u[m] WN km }

m=n-N-p+ 1

fork=0,..,N-1.

y[m] WN km =

m_,-_

+ _, htp] WNkP {

p=l

Similarly, it can be shown that

n-N

Z utmlW_ )
re=n-N-p+1

fork= 0 .... N-1.

H(eJmk T) _ u[m] WN km
m=n + 1

'_ ytm] WN km =

m=n+ 1

Z hip] WNkP {

p=l

n

Z utm] WN km }

m=n-p+ 1

fork=0 .... N-1.

Using Eqns. (2.2.1), (2.2.5) and (2.2.7-8) we find that

** n-N

ENn(mk) = _ h[p] WNkP { _ u[m] WN km

p=l m=n-N-p+l

n

E utm]w_-m }
m=n-p+l

for k=0 .... N-1.

(2.2.5)

(2.2.6)

(2.2.7)

(2.2.8)

(2.2.9)



Chapter2 • Page38

Eqn.(2.2.2)now follows usingthedefinition of Eqn. (2.1.7).

Q.E.D.

Later, in Section 5.2, it will be useful to be able to find a magnitude bound on ENn(O_k).

The following theorem provides such a bounding function by using only a finite summation and

therefore can be implemented in practice.

Theorem 2.2:

magnitude of ENn(Cok) is bounded for each k as follows,

M-1

IENn(o_)I < _ Ih[p]l IUNn-P(o_)-UNn(cok)l +

p=l

Under the assumptions of Theorem 2.1 we f'md that given some f'mite integer M, the

(2.2.10)

where Uma x = sup lu[m]l.
m

2 Uma x _ p Ih[p]l,

p=M

fork= 0,.., N-l,

Proof." Using the triangle inequality and Eqns. (2.2.2) and (2.2.9) we find,

M-1

• IENn(o._k)l s _ Ih[p]l IUNn'P(cok)-UNn((Ok)l +

p=l

Since,

n-N n

+ E 'htp]l ' E u[m]WN km- E u[m]WNkrn ,

p=M m=n-N-p+l m=n-p+l

n-N

'_, utm] WNkrn _

re=n-N-p+1

fork=0 .... N-1.

n

utm] WN km I

m=n-p+l

n-N n

lu[mll + _ lu[m]l < 2Uma xp

m=n-N-p+l m=n-p+l

we conclude that Eqn. (2.2.10) is true.

Q.E.D.

<

(2.2.11)

(2.2.12)
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Corollary 2.1: Under the assumptions of Theorem 2.2,

IENn(O_k)l < 2 Urea x _ p Ih[p]l, for k- 0,.., N-1.

p=l

[26].

(2.2.13)

Choose M=I in Theorem 2.2. This corollary is closely related to Theorem 2.1 in Ljung

For later reference, we rewrite Eqn. (2.2.10) in terms of the spectrum of u[n] as defined in

M-1

Z
p-1

Ih[p]l IUNn-P(o)k) WN -kp- UNn(Ok)l +

g,
2 Urea x 2._ P Ih[p]l, for k = 0,.., N-1.

p=M

(2.2.14)

Eqn. (2.1.10).

IENn( )l

Note that the above bounding function also bounds the magnitude of the error between YNn(o_)

and H(eJ°)k T) UNn(O)k ) for k=O .... N-1.

Later, in Sections 4.3 and 4.4, we will be interested in computing the maximum output

signal of a transfer function for which we have a magnitude bounding function in the frequency

domain. The following theorem will be useful in this respect.

The0rcm 2,3: Let y[m] = h[m],u[m], where h[m] is an infinite-length, causal, impulse response

with all its poles in the open unit disk. We denote the DTFT of h[m] by H(eJ°3kT), and the DFT of

the N-points of u[m] ending with time index n, by UNn(O)k). Then,

N-1

y[n] = 1 _ H(eJ°_k T) UNn(o_ k) WN-kn + e[n], (2.2.15)

N k=0

where

e[n] = _ h[p] ( u[n-p] - u[n-(p modulo N)] ). (2.2.16)

p=N .
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Remark 2: The signal e[n] is the error due to the fact that the impulse response h[n] is of infinite

length. We note from Eqn. (2.2.16) that if h[p]=0 for p > N, then e[n]--0, 'fin.

Proof: From the definition of Eqn. (2.1.8) we fred that

N-1

y[n] = 1 _ YNn(O)k) WN -kn.
N k--0

(2.2.17)

Using Eqn. (2.2.1) from Theorem 2.1, we find that

N-1 N-1

y[n] = i _ H(eJ°)k T) UNn(O)k ) WN -kn + 1 _ ENn(O)k) WN "kn.
N k--0 N k--0

(2.2.18)

Thus, the second term of the above equation is equal to e[n]. This will allow us to use Eqn.

(2.2.9) from Theorem 2.1 to f'md e[n]. However, first we will find an alternate form of Eqn.

(2.2.9). We observe that

n-N n n

utmlWN kin- utml WNkm = (utm-N]-utml)WN km
m=n-N-p+ 1 re=n-p+ 1 re=n-p+ 1

for k - 0 .... N-1, (2.2.19)

since WN-kN= 1 for integer k.

Eqn. (2.1.8), we can express e[n] as follows.

N-1 ** n

etn] = 1 E _ h[p]WNkP E (utm-N-]-utm])wN kmwN -kn

N k=0 p=l m=n-p+l

Then, using Eqns. (2.2.9) and (2.2.19) and the inverse DFT of

(2.2.20)

Rearranging the summations yields

** n N-1

e[n] = E h[p] E (u[m-N]-u[m]) 1 E WN k(m-n+p).

p=l m=n-p+l N k=0

Noting that

Nx l1 _ WNk(m'n+P)=
gt k--O

1, form=n-p+iN

0, otherwise

(2.2.21)

(2.2.22)

where 'i' is an integer, we f'md
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n N-1

(utm-N]-utm]) 1 _ WNk(m'n+P)

m=n-p+l N k=0

f
= 10, forp- 1,..,N-1

[u[n-p] - u[n-(p modulo N)], for p > N.

Eqn. (2.2.16) follows from Eqns. (2.2.21) and (2.2.23).

Q.E.D.

(2.2.23)

We want to be able to find a magnitude bounding function on y[n]. The following theorem

provides such a bounding function by using the inverse DFT and the results of Theorem 2.3.

Theorem 2.4: Under the assumptions of Theorem 2.3 we find that, for a real-valued impulse

response h[n] and a real-valued signal u[n], the magnitude of y[n] is bounded at each n as follows,

(N/2)- 1

ly[n]l < 1 { IH(eJC°0T)l IUNn(0_0) I + 2 _ IH(eJC-°kT)l IUNn(C.0k)l

N k--1

where Urea x --

OO

+ IH(eJO)(N/2)T)I IUNn(c.O(N/2))l } + 2 Uma x _ Ih[p]l, (2.2.24)

p=N

sup lu[m]l, and where we have assumed that N is even. An alternate form of the

m

theorem can easily be proven for the case of an odd value of N.

Proof: By applying the triangle inequality to Eqn. (2.2.15) and noting that IWN-knl=l we find,

N-1

ly[n]l < 1 _ IH(eJC°kT)l IUNn(C-0k)l + le[n]l. (2.2.25)
N k=0

From Eqn. (2.2.16) we obtain a bound on le[n]l,

le[n]l < Ih[p]l I( u[n-p] - u[n-(p modulo N)] )1 < 2 Uma x _ Ih[p]l. (2.2.26)

p=N p=N

To complete the proof, we observe that since h[n] and u[n] are real-valued sequences, then
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IH(d%LI = IH(eic°t -k T l,

IUNn(%)i= IUNn( CN_k))I,

respectively,for k=l,.., (N/2)-]. Eqn. (2.2.24)followsfrom Eqns. (2.2.25-8).

Q.E.D.

(2.2.27)

(2.2.28)

In this chapter, we have derived several new signal processing results which will be used in

the later parts of this thesis. Specifically, we will use the time-domain bounding results of

Theorems 2.3 and 2.4 in Chapter 4 where we develop a robustified time-domain parameter

estimator. In addition, the frequency-domain bounding results of Theorems 2.1 and 2.2 will be

used in our development of the frequency-domain bounding method in Chapter 5.
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CHAPTER 3.

ROBUST ESTIMATION PROBLEM STATEMENT

3.1 Introduction

The purpose of this chapter is to define the robust estimation problem. First, we will

describe the adaptive control scenario in which we plan to use the robust estimator. Then, in

Section 3.2, we list the assumptions concerning the continuous-time plant and the disturbance.

In Section 3.3, we will develop a discrete-time model of the continuous-time plant. Discrete-time

impulse response bounds for the plant and disturbance DFT bounds axe derived in Sections 3.4 and

3.5, respectively. The results of these sections will enable us, in Section 3.6, to form a list of

assumptions concerning the discrete-time plant model and the disturbance. These assumptions can

be derived from the assumptions of Section 3.2 concerning the continuous-time plant and the

disturbance or, alternatively, they can serve as a starting point for the statement of the robust

estimation problem entirely in discrete-time. In Section 3.7, we present the technical details of the

robust estimation problem statement and provide an overview of the solution.

Problem Scenario: Sampled-data Adaptive Control

It is assumed in this thesis that a continuous-time plant is being controlled by a discrete-time

controller, as is shown in Figure 3.1. The continuous-time, single-input single-output (SISO)

plant GCtrue(S ) is controlled by a discrete-time compensator K(z). GCtrue(S) has unmodeled

dynamics and an additive output disturbance d(t). The sensor noise rl(t) has most of its energy at

high frequencies. In this thesis, we will assume that the sensor noise rl(t ) can be effectively

eliminated by the low-pass, anti-aliasing filter Fa(s ) or by the low-pass nature of the plant itself.

Consequently, for the remainder of the thesis, we will ignore the effects of sensor noise. Since the

plant is preceded by a zero-order hold, we can use a discrete-time model to represent the transfer

function from u[n] to Y0[n] as is shown in Figme 3.2. Finally, we can represent the closed-loop

control system, ignoring the sensor noise and the ftlter Fa(s), by the discrete-time system that is

shown in Figure 3.3. In this figure, the discrete-time signals r[n], d[n] and y[n] are the sampled

versions of r(t), d(t) and y(t), respectively.

One of the goals of this thesis is the development of a discrete-time robust estimator which

can be used to identify Gtrue(Z) in a closed-loop and provide this information to an on-line
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control-lawupdatealgorithm. Specifically,theplantiscontrolledby afixed-structure,

discrete-timecompensatorwhoseparametersareupdatedinfrequentlyusinginformationfrom the
robustestimator.Thisadaptivecontrolschemeis illustratedin Figure3.4. In orderto developa

discrete-timemodelof thepartiallyknownplant,wemustmakesomeassumptionsaboutthe

continuous-timeplant. In thefollowing section,we list theseassumptionsaswell asassumptions

concerningthedisturbanceandtheinputsignal.
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Disturbance

d(t)
Continuous-time

Anti-aliasing _-ompensa_or" _
Reference Filter Plant I

I _, I _u[n] i -_TI/ l Yo(t) _+

_ _2X_Fa(S)__f-_ K(z) I- _ l-e-= ' _GCtrue(S)_-_-_Z _"1 rl T rl i 1 s i-i i +'-"
I

Output

y(t)

>

Zero-order _ +

8ampler Hold __s_t)

noise

Figure 3.1: Discrete-time Control of a Sampled-data System.

u[n] )I 1-e-STs

Zero-order Conti nuous-ti me

Hold Plant 8ampler

GCtrue(S ) Y°(t) >1 _ Y°[n]T >
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3.2 Continuous-time Assumptions on the Plant and Disturbance

Consider the system of Figure 3.5 where the continuous-time plant GCtrue(S), which we arc

trying to identify, has input u(t), output y(t), and an additive output disturbance d(t). We make the

following assumptions, which we label for later reference with the letters 'AC' referring to the fact

that they are assumptions concerning the continuous-time plant, disturbance and input. In the

remaining sections of this chapter we will develop a set of discrete-time assumptions from the

following list of continuous-time assumptions. When the discrete-time assumptions are

enumerated in Section 3.6 we will discuss why each assumption is needed.

AC1) Plant Assumptions. We assume a structure for the nominal model of GCtrue(S) and a

magnitude bounding function on the unstructured uncertainty. That is, we assume that

GCtrue(S) - GC(s,0C0 ) [1 + SOu(s)] (3.2.1)

where GC(s,eC0 ) is a nominal model, SOu(s) denotes the unstructured uncertainty of the plant, 0c0

is a vector of plant parameters and we assume,

ACI.1) GC(s,OC0) - Be(s)/AC(s),

where the polynomials Be(s) and AC(s) for the continuous-time system are,

Be(s) - be0 smCl + bCl s(mCl-1) +... + bCmcl ,

At(s) = snCl _ acl s(nel-1) +... - aCncl , nc 1 > me 1,

and where the parameter vector of the continuous-time plant is,

0c0 = [ aC 1 ... aCncl bC0 bCl.., bCmcl ]T.

AC1.2) 0c0 e O c, where O c is a known bounded set.

(3.2.2)

(3.2.3)

(3.2.4)

This assumptions means that we have some coarse prior idea of what the parameters are.

AC1.3) I_Cu(J_)l < ACu(jC0), V_. (3.2.7)

This assumption is our characterization of the high-frequency unmodeled dynamics. While

other characterizations are possible, this frequency-domain approach has been shown to have

pragmatic utility [34].

AC1.4) IdSCu(j_)/dc01 < VCu(J¢.o), Vow. (3.2.8)

This assumption tells us how smooth the unmodeled dynamics are. This assumption is

required since we will be using DFTs to perform our frequency-domain calculations and will

(3.2.5)

(3.2.6)
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needto computethemaximumvariation of the plant in between the discrete frequency points.

AC1.5) Ge(s,0C0) and SOu(s) and, hence, GC(s,0e0 ) 8Cu(s ) have all their poles in the open

left-half plane for all 0c0 _ Oc. Thus, we assume that the true plant is asymptotically stable.

A'C1.6) A bounding function on the magnitude of the impulse response of the true plant,

denoted by gtrue(t), is known such that

Igtrue(t)l < _ b i t(ri ) e(-ai t), for t > 0 (3.2.9)

i=1

where r i is a positive integer, and b i > 0, a i > 0 (i.e. poles in the open left-half plane) and r i

are known for i=l,.., I0C. gtrue(t) is assumed to be causal. This assumption is saying that

we know some coarse bounding function on the impulse response of the partially known

plant. If we know that the system has no double pole, then a simple decaying exponential

b e -at of appropriate time constant and gain satisfies this assumption. If the system is known

to have a double pole, then we must use a bounding function of the form b t e -at. Eqn.

(3.2.9) is a general expression allowing summations of impulse response bounds, for

example b 1 e('al t) + b 2 t e('a2t).

AC1.7) A bounding function on the magnitude of the impulse response of the additive plant

error, that is, we assume we know a bounding function of the same form as Eqn. (3.2.9) on

Igtrue(t) - g(t,00C)l, for all 0c0 _ O e, where g(t,00c) is the impulse response of GC(s,0C0 ).

This assumption means that we know some coarse bounding function on the impulse

response of the additive plant error that is due to the unmodeled dynamics.

AC1.8) zero initial conditions.

Thus, our a priori assumptions are that we know mc 1 and nc I, the degrees of BC(s) and

AC(s), respectively, and the bounding functions ACu(j_) and VCu(jC.0). Further, we assume that the

parameter vector 0c0 is in some known bounded set ® c, which is only a coarse and, hence, large a

priori estimate of the parameter space.
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AC2) Disturbance Assumptions. We assume that the unmeasurable disturbance d(t) satisfies:

AC2.1) }d(t)l < dma x, Vt, and

AC2.2) IDC(jo)I < Dc(j_), _'o.

where the constant dma x and the function Dc(j_) are known a priori.

(3.2.10)

(3.2.11)

AC3) Input and Output Signal Assumptions. We assume that both the input signal u(t) and the

output signal y(t) are measurable and that u(t) is bounded.

AC3.1) lu(t)l < Uma x, Vt, where Urea x is known a priori. (3.2.12)

Remark 1; Assumption AC1.7 will only be used in the development of the time-domain parameter

estimator of Chapter 4.

Remark 2: Assumptions AC1.2-1.4 and AC1.6-1.7 are quite different from the classical MRAC

assumptions, which are listed in Subsection 1.2.1. We do assume knowledge of the structure of

the "nominal" plant model, and hence its relative degree and its maximum order. However, we do

not assume that the plant is minimum phase nor do we make non-pragmatic assumptions about the

plant, such as knowledge of: 1) the sign of the high-frequency gain and 2) an upper bound on the

high-frequency gain.

3.3 Development of a Discrete-time Plant Model

In this section, we will show how the assumptions of the previous section, concerning the

continuous-time plant and the disturbance, can be used to find their discrete-time counterpart,

which is very similar. In Subsections 3.3.1-3, we will assume that the continuous-time nominal

model of the plant is known along with magnitude bounding functions on the continuous-time

unstructured uncertainty and the derivative of the continuous-time unstructured uncertainty as

assumed in AC1.3-4. In Subsection 3.3.4, we will discuss the issues that arise due to the fact that

we do not know the parameters of the nominal model; rather, we only know that they lie in some

known bounded set.
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3.3.1 Development of a Discrete-time Nominal Plant Model

In this subsection, we consider the continuous-time plant GCtrue(S) whose input is generated

by a zero-order hold. We will use the zero-order hold equivalent of the continuous-time plant to

find a discrete-time model of the plant. The anti-aliasing filter, in Figure 3.1, could be considered

as part of the plant. However, for simplicity, we will ignore the effects of the anti-aliasing filter in

this development. The true discrete-time plant, using a zero-order hold equivalence is given by,

Gtrue(Z) - (1 - z"l) Z{ (l/s) GCtrue(S) }. (3.3.1)

Similarly, given a continuous-time nominal model GC(s), the discrete-time nominal model G(z) can

be found as follows,

G(z) -- (1 - z -1) Z{ (l/s) GC(s) }. (3.3.2)

See Franklin and PoweU [30, p.62] for details.

3.3.2 Development of a Bounding Function on the Magnitude of the Discrete-time Unstructured

Uncertainty

We seek a bounding function on the magnitude of the discrete-time unstructured uncertainty.

To find this, we must first make several definitions. The transfer function of a zero-order hold is

given by,

Hzoh(S) -- (1 - e "sT) / s, (3.3.3)

which allows us to define the transfer function of the true plant and the zero-order hold,

GCtrue,zoh(S) = Hzoh(S) GCtrue(S). (3.3.4)

Since there will always be some unstructured uncertainty in the continuous-time system, we write

GCtrue(S) = GC(s) [1 + 5Cu(s)] (3.3.5)

where GC(s) is a nominal model and _SCu(s) is the unstructured uncertainty. We assume a

magnitude bounding function on the continuous-time unstructured uncertainty, that is,

15Cu(jO )l_<t Cu(JCo),vco,

as was assumed in AC1.3. For later use, we define

(3.3.6)

GCzoh(s) = Hzoh(S) GC(s) • (3.3.7)
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Wedevelopa similarkind of plantdescriptionin discretetime. Thediscrete-timemodelof

theplantthatresultsfrom samplingthecontinuous-timetransferfunction of the plant and the

zero-order hold is,

•Gtrue(eJ°_T) =1 _ GCtrue,zoh(JO_+jrO_s),

T r=--**

(3.3.8)

where cos is the sampling frequency and T is the sampling period. Using Eqns. (3.3.4-5) and

(3.3.7-8) yields

OO

Gtrue(eJ °_T) = 1 _ GCzoh(JO._+jrO_s) [1 + 8Cu(jO,'+jrCOs)].
T r=--_

(3.3.9)

We define the desired form of the true discrete-time plant,

Gtrue(Z) = G(z) [1 + 8u(Z)] (3.3.10)

where the discrete-time nominal model G(z) is defined by Eqn. (3.3.2). It can be shown, using

Theorem 4.1 of Astrom and Wittenmark [31], that

G(eJ °_T) = (1 - e'J caT) Z{ (l/s) GC(s) ] [ z=ejcoT

(3.3.11)

= 1 _._ GCzoh(jco+jrCOs).

T r=--**

(3.3.12)

It was shown by Rohrs et al. [21] that, with reference to the nominal model of Eqn. (3.3.12),

which we have shown is the same as the nominal model of Eqn. (3.3.2),

oo

5u(ejc°T ) = { 1 _ GCzoh(jc0+jrCOs ) 5Cu(Jc0+jrCOs) } /G(ejc°T), Vow.
T r=-_

(3.3.13)

Eqn. (3.3.13) follows from Eqns. (3.3.9-12). Then, using the triangle inequality and Eqn. (3.3.6)

yields,

15u(ejC°T)l < Au(eJC°T ), V¢o

where

(3.3.14)

oO

Au(ejc°T ) = { 1 _ IGCzohfjco+jrCOs)l ACu(JOr_jrt.o s) } /IG(ejc°T)l, Vco. (3.3.15)
T r=--o.



Chapter3 Page53

Recallingthedefinitionof GCzohfjco)andobservingthat

(1- e'fJtm'Jr°_s)T) = (1- e-Je°T),V_

wecanfactorthis termoutof thenumeratorof Eqn.(3.3.15)to yield

(3.3.16)

Au(ejcoT) =

II-e'J°_TI{ 1

T

X_ IGC(jto+jrO_s) / (jto+jrOs)l ACu(jO+jrOs) } / IG(ejc°T)l, Vox

ra-_

(3.3.17)

In practice, the sums in Eqns. (3.3.12), and (3.3.13) will usually be dominated by the i"=0 terms.

When the r---0 terms dominate the sums, Eqn. (3.3.13) yields the approximate equality,

8u(e jr°T) -_ 8Cu(jCo), for -Oas/2 < co < t.Os/2. (3.3.18)

Similarly, it can be shown that

Au(eJ t°T) _ ACu(jC0), for-O_s/2 < co < _s/2, (3.3.19)

when the r=0 terms dominate the sums.

In summary, in this subsection we have shown how to find a magnitude bounding function

on the discrete-time unstructured uncertainty. To find this bounding function, we needed a

continuous-time nominal model from which we found a discrete-time nominal model; in addition,

we needed a magnitude bounding function on the continuous-time unstructured uncertainty. Later,

in Section 9.2, it will be shown through an example that Eqn. (3.3.19) will be a good

approximation for many problems. Thus, for many problems it will not be necessary to compute

Eqn. (3.3.17). Appendix A contains several useful results that can aid in the computation of Eqn.

(3.3.17) should the need arise.

3.3.3 Development 9f a Bounding Function on the Magnitude of the Derivative of the Discrete-time

Unstructured Uncertain_

We seek a bounding function on the magnitude of the derivative of the discrete-time

unstructured uncertainty. This derivative bounding function is a description of how smooth the

discrete-time unstructured uncertainty is. Taking the derivative of Eqn. (3.3.13) yields
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dSu(eJ¢°T)/ do) =

{ G(e jo)T) [l

T

Z ( (dGCzoh / do) 8Cu

r_--oo.

+ GCzoh (dSCu/do)) ) ]

(3.3.20)

- [ 1 _ GCzoh _cu ](dG(ejo)T)/do)) }/G(cJO)T)2, Vo),

T 1.=--.o

where we have omitted the arguments of the summands for clarity. From Eqn. (3.3.12) we find

that

dG(cJo)T)/do) = 1 _ (dGCzoh(Jt))/d_J) I"
T r=-o* ag=o)+ro)s

Combining Eqns. (3.3.13), and (3.3.20-1) yields

(3.3.21)

dSu(eJo)T)/do) = {

oo

1 _ [(_SCu(jo)+jro)s)-_u(ejc°T)) (dGCzoh(J_))/dx))1
T r=--o* 1)=o)+ro) s

+ GCzoh(Jo)+jro)s) (dSCu(j_)) / d_) I ] } / G(ejo)T)' 'qo)" (3.3.22)

I I)=O)+ro) s

We note that if the r=0 terms dominate the sums in Eqns. (3.3.12-13) and (3.3.22), then Eqn.

(3.3.18) is true and

dSu(C jo)T) / do) -- dSCu(jo)) / do), for -o)s/2 < co < o)s/2. (3.3.23)

We can now find a magnitude bounding function on dSu(eJo)T)/do) by using the triangle inequality,

assumptions AC1.3-4, and Eqn. (3.3.22). Thus,

Id_u(eJo)T )/do)l < Vu(eJo)T), Vo) (3.3.24)

where

Vu(ejo)T ) = { 1
T [ (ACu(jo)+jro)s) + Au(ejo)T ) ) IdGCzoh(S) / dsl [

r=--o* s=jo)+jro) s

and where

+ IGCzoh(Jo)+jro)s)l VCu(jo)+jro)s)] } /IG(ejo)T)l, VO). (3.3.25)
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IGCzoh(j0_-jrO_s)l= ii_e-JO_TIIGC(jcx_-jr0_s)l/ Ijo_-Jr_sl, _'_

and

(3.3.26)

IdGCzoh(S) / dsl [ = II-e-JC-°Tl Id(GC(s)/s) / dsl I
s=ja,'+jro_ s s=jco+jr_ s

+ T IGe(jco+jr_s)l/Ijo._+jr_sl , ga_. (3.3.27)

In Eqn. (3.3.25) we have been forced to use a very conservative magnitude bound for the term

(SCu(jOr_-jro_ s) - 8u(eJ_T)) since we do not have any phase information about 8Cu and _5u. It may

be possible to derive other, less conservative, bounding functions on the magnitude of the

derivative of the discrete-time unstructured uncertainty. That is, from Eqn. (3.18) we expect

considerable cancellation in the term (_Cu(jO_+Jr_s) - 5u(eJ°_T)) so that a new bounding function

using this cancellation could be significantly tighter than Eqn. (3.3.25).

In summary, in this subsection we have shown how to find a magnitude bounding function

on the derivative of the discrete-time unstructured uncertainty. To find this bounding function, we

needed a continuous-time nominal model from which we found a discrete-time nominal model; in

addition, we needed magnitude bounding functions on the continuous-time unstructured uncertainty

and the derivative of the continuous-time unstructured uncertainty. Later, in Section 9.2, it will be

shown through an example that Eqn. (3.3.23) is a good approximation for many problems. Thus,

for many problems it will not be necessary to compute Eqn. (3.3.25). Appendix A contains several

useful results that can aided in the computation of Eqn. (3.3.25) should the need arise.

3.3.4 Treatment of the Case of Nominal Models with Structured Uncertainty

In this subsection, we will discuss the modifications in the results of Subsections 3.3.1-3

that are necessary when the continuous-time nominal model has smactured uncertainty. That is, it

was assumed in these subsections that we knew the continuous-time nominal model from which we

could f'md the discrete-time nominal model. In fact, with reference to assumptions ACI.I-2, while

we know the structure of the continuous-time nominal model, we do not know its parameters. We

only know that the nominal model parameters lie in some bounded set O c.

Using Eqn. (3.3.2), we can find the structure of the discrete-time nominal model from
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ACI.1. In addition,usingEqn.(3.3.2)andgivenassumptionAC1.2, thatis, 0c_Oc,wecanfind

a setO suchthattheparametervector0 of thediscrete-timenominalmodelsatisfies0eO. Thatis,

Eqn.(3.3.2)implicitly definesamapfrom theboundedparameterspace®c to theparameterspace

O. We denotethismapby f(.). Ackermann[32, p.95]summarizestherelationshipbetweenthe

continuous-timeanddiscrete-timeparametersusingastate-spacerepresentationof thesesystems.

In this thesis,weview themapf(-) asanexplicitmapthatcanbefoundfor anygivenexample
usingthemethodsin FranklinandPowell[30]. This methodologywill laterbeillustratedby an

example,in Section9.2.
In summary,from ACI.I-2 andtheapplicationof Eqn.(3.3.2),we havethefollowing

continuous-timeandcorrespondingdiscrete-timenominalmodelstructures,

GC(s,0C),with 0c e Oc, and (3.3.28)

G(z,0),with 0 = f(e c) e O, (3.3.29)

where the set O is defined as follows,

e= {ele=flee),fore ce 0 c}. (3.3.30)

We can now f'md modified forms of the results of Subsections 3.3.2-3. The new magnitude

bounding functions will be formed by maximizing the expressions of Eqn. (3.3.17) and Eqn.

(3.3.25) over the parameter space O c. Thus, from Eqn. (3.3.17), the new bounding function on

the discrete-time unstructured uncertainty is given by

Au(ejo_T ) = ii_e-jo_Ti o

sup [ { 1 _ ( IGC(jc0+jrO_s,0C ) / (jc0 +jrC0s)l ACu(JO3+jrc0 s) ) } / IG(ejc°T,f(0C))l ], Vc0.

0ce ®c T r=--o-

(3.3.31)

Further, from Eqn. (3.3.25), the new bounding function on the derivative of the discrete-time

unstructured uncertainty is given by
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Vu(eJc-oT) _-

sup [ { 1

0ce Oc T

oo

( (ACu(Jc0+jrco s) + Au(eJC°T)) IdGCzoh(S,0 c) / dsl

+ IGCzohfJO)+jrCOs,0C)l VCu(Jco+jrO_s) ) } /IG(ejc°T,f(0C))l ], Vow.

wh_e

IGCzoh(jC.o+jrCOs,0C)l = II-e'J°)TI IGC(jc0+jr_s,0C)l/Ijco+jrcosl, V¢.o, and

(3.3.32)

(3.3.33)

IdGCzoh(S,0c) / dsl [ = II-e-jc°TI Id(GC(s,0C)/s)/ dsl[
I

s=jca+jrra s I s=jc.o+jrco s

+ T IGC(jo)+jrCOs,0C) / Ijoy_-jrcosl, Vco. (3.3.34)

The bounding function of Eqn. (3.3.31) can be used for Au(e jc°T) in Eqn. (3.3.32). Alternatively,

one could substitute the expression of Eqn. (3.3.31) into Eqn. (3.3.32) and compute the supremum

for this expression, however, it would make the computation of this expression quite complex.

3.4 Discrete-time Impulse Response Bounding

In this section, we will show how the magnitude of the discrete-time impulse response of a

system formed using the zero-order hold equivalence, can be bounded by using a magnitude

bounding function on the impulse response of the corresponding continuous-tie plant. We will

use these results to derive a discrete-time impulse response bounding function from the

continuous-time bounding function of assumption AC1.6. From Franklin and Powell [30, p.62]

we find that if the zero-order hold equivalence is used, then the discrete-time impulse response

gtrue[n] is related to the continuous-time impulse response gtme(t) as follows.

nT

gtrue[n] = _ gtrue(t) dt, Vn. (3.4.1)

(n-1)T

If gtrue(t) satisfies the magnitude bounding function of assumption AC1.6 of Section 3.2, then we

find
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nT _ nT
Igtrue[n]l < _ Igtrue(t)l dt < b i _ t(ri ) e('ai t), for n > 1. (3.4.2)

(n-1)T i=l (n-1)T

For the case of r=0, corresponding to a bounding function that is a simple exponential decay b e -at,

it is easily seen that

nT

b f e -at dt - (b/a) ( 1 - e "aT ) e -aT(n-l), for n > 1. (3.4.3)

(n-1)T

Next, we consider the case of r=-l, which corresponds to the bounding function b t e -at. This

bounding function is the impulse response of a double pole system, that is, a system with two

identical real poles. In Appendix B, it is shown that for this case,

nT

b J" t e -at dt =

(n-1)T

(b/a) { [ (l/a) (1 - e -aT) - T ] + [ nT (1 - e -aT) ] } e -aT(n'l), for n > 1.

(3.4.4)

A general method for the treatment of larger values of r is also presented in Appendix B. For

example, in Appendix B we treat the case of r=2, which corresponds to the impulse response of a

triple pole system. However, most practical situations will not require more than the case of r=-l,

which corresponds to a system with a double pole.

3.5 Bounding the DI_I" of the Disturbance

3.5,1 The Basic Technique

In this section, we consider the problem of finding a magnitude bounding function on the

DFT of the time-sampled disturbance d[n], given a magnitude bounding function on the Fourier

transform of d(t). Thus, as in assumption AC2.2 of Section 3.2, we assume that we know a

magnitude bounding function DC(jc0) on the Fourier transform of d(t), :F{d(t) }, which we denote

by DC(jo_). That is,

IF{d(t)}l = IDC(jo_)l < De(it0), 'gox (3.5.1)

From Eqn. (2.1.12) we find that the magnitude of the DTFT of din], which we denote by D(eJ°_T),

is bounded by the function D(e j°_T) as follows
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ID(_T)I _< _(_T) = 1 _ Dco_ + jr_s), V_. (3.5.2)
T 1"_-_

Using Eqns. (2.1.18) and (2.1.20) it can be shown that

g/q"

IDN(COk)I < (T/2g) I D(e j'°T) Isin((c0k-'0)TN/2) / sin((c.0k-_)T/2)l d_

__q"

fork=0 .... N-1.

It is a property of the DTFT that if the DTFT of wire] is W(eJC°T), then the DTFT of w[m-n] is

e-JnmTw(oJc'°T). Thus, a shift in time doesn't change the magnitude of the DTFT. This fact

allows us to conclude that

gfr

IDNn(C.Ok)l < (T/2g) I D(e j_T) Isin((t_k-_)TN/2) / sin((c.Ok-_)T/2)l d_

-/r/T

for k = 0,.., N-1.

for all n, where DNn(t, Ok) is defined as in Eqn. (2.1.7).

(3.5.3)

(3.5.4)

3.5.2 Treatment of the Start-up Situation

In this subsection, we consider the effects of the disturbance on the robust estimator. We

must consider the situation that occurs when the estimator starts up. That is, from the viewpoint of

the estimator, the disturbance d[n] is zero for n < 0. Thus, we define the disturbance,

d+[n] = I d[n], for n = 0, 1,..

L0, for n < 0. (3.5.5)

The N-point DFT of d+[m] for the last N points ending with 'n' is defined, as in Eqn. (2.1.7) by

n

DN+n(ok) = _ d+[m] WN kin, for k = 0 ..... N- 1. (3.5.6)
m=n-N+l

We are really concerned with the properties of DN+n(o_), rather than DNn(C.0k) , since DN+n(c.Ok)

appears in all of our algorithms. However, we note that
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DN+n(ok) =

n

d+[m] WN kin,
m---0

for n = 0, 1 .... N-2,

DNn(Cok), for n _>N-l,

fork = 0.... ,N-I.

(3.5.7)

Thus, we need only be concerned with the differences between the DFT of DN+n(0_ k) and

DNn(Ok) for n---0 .... N-2, that is, during start-up. To treatthis start-up situation, we tin'st define

the signal,

d+[m] = wn[m] d[m]

where the window wn[m] is given by,

(3.5.8)

f
whim] "= ] 1, for m = 0,.., n (3.5.9)

0, otherwise.

From Eqn. (2.1.18) we know that the DTFT of wn[m] is given by

wn(eJ °T) = e-J ¢°T(n/2) sin(_T(n+l)/2) / sin(oT/2). (3.5.10)

Thus, the DTFr of d'+[n] is given by the convolution,

wn(e_ c0T),D(e_coT), (3.5.11)

which, from the discussionof Section2.1,we know isequal to theN-point DFT of d+[m] forthe

last N points ending with time index n, for or=o k. Using this information, it can be shown that,

IDN+n(Ok)l _< DN+n(cok ),

where

(3.5.12)

DN+n(cok) =

(T/2_) _" D(eJ "oT) Isin((cOk-.O)T(n+l)/2 ) / sin((tOk-X))T/2)l do,

-_/T for n = 0,.., N-2,

_N(Ok), for n > N-1,

(3.5.13)

for k = 0,.., N-l,
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andwhereweknow from Eqns.(3.5.4)and(3.5.7)that
nfr

_N(COk) = (T/2x) I D(e jl)T) Isin((o)k-a))TNf2) / sin((0)k-'O)T/2)l da)

-_/T

for k=0,.., N-1. (3.5.14)

In summary, we have shown how to compute a magnitude bounding function on the DFT of

the time-sampled disturbance given a magnitude bounding function on the Fourier transform of the

infinite-length, continuous-time disturbance from which the sampled signal was derived. The

expressions that were derived in this section are rather complex. Thus, in practice, we will work

directly with the DFT of some disturbance for which we have some sort of time-domain model.

However, it is important to note that the kind of bounding functions that we have derived in this

section can all be found in terms of the magnitude bounding function on the Fourier transform of

the continuous-time disturbance. The bounding functions of Eqns. (3.5.13-14) will eventually be

used to compute a bound on the error associated with the frequency-domain estimate of the plant.

3.6 Restatement of Assumptions in Discrete-time

In this section, we list assumptions about the discrete-time plant in preparation for the

statement of the robust estimation problem in Section 3.7. In addition, using the results of Sections

3.2-5, we show that the information assumed in this section about the discrete-time plant and the

disturbance can be obtained from the assumptions about the continuous-time plant and the

disturbance that were listed in Section 3.2.

Consider the system of Figure 3.6 where the discrete-time plant Gtrue(Z), is the zero-order

hold equivalent of the continuous-time plant of Section 3.2. Gtrue(Z) has input u[n], output y[n],

and an additive output disturbance d[n]. We make the following assumptions, which we label for

later reference with the letters 'AD' referring to the fact that they are assumptions concerning the

discrete-time plant, disturbance and input.

AD1) Plant Assumptions. We assume a structure for the nominal model of Gtrue(Z) and a

magnitude bounding function on the unstructured uncertainty. That is, we assume that

Gtrue(Z) = G(z,00) [1 + Su(Z)] (3.6.1)

where G(z,00) is a nominal model, 8u(Z) denotes the unstructured uncertainty of the plant, 00 is a
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vectorof plant parameters and we assume,

ADI.1) G(z,0 0) = B(z) /A(z),

where the polynomials B(z) and A(z) for the discrete-time system are,

B(z) = b 0 z(ml-nl) + b 1 z(ml-nl "1) +... + bml z-nl,

A(z) = 1 - a 1 z"1 +... - anl z'nl, n 1 > m I,

and where the parameter vector of the discrete-time plant is,

ADI.2)

00=[al...an I b0 bl...bm 1]T.

00 e ®, where ® is a known bounded set.

(3.6.2)

(3.6.3)

(3.6.4)

This assumptions means that we have some coarse prior idea of what the discrete-time

parameters are. The bounded set O will be used to compute various a priori bounds in

Chapters 5 and 6.

AD1.3) 1_Su(eJC°T)l _< Au(ejc°T), Vco. (3.6.7)

This assumption is our characterization of the discrete-time unmodeled dynamics. In Section

4.4, we use this assumption to f'md a time-domain bound on the effects of unstructured

uncertainty. In addition, it is used in Section 5.6 to make the frequency-domain estimation

method robust.

AD1.4) tdSu(e_C°T)/dcol < Vu(eJ_T), Vco. (3.6.8)

This assumption tells us how smooth the discrete-time unmodeled dynamics are. In Sections

5.7 and 5.8, we use this assumption to smooth out our bound on the uncertainty and to

bound the inter-sample variations of the uncertainty between the discrete frequency samples

of our bounding function.

AD1.5) Gtrue(Z) and G(z,00) have all their poles in the open unit disk for all 00e O.

Thus, we assume that the true discrete-time plant is asymptotically stable. This assumption

is required by the frequency-domain estimation method. The relaxation of this assumption is

discussed in Section 10.2.

AD1.6) A bounding function on the magnitude of the impulse response of the true plant,

denoted by gtrue[n], is known such that

Igtrue[n] I < _ gi n(ri) Pi n, (3.6.9)

I"

i=l

(3.6.5)

(3.6.6)
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whereri is apositive integer,andgi > 0, 0 < Pi< 1(i.e. all thepolesof gtrue[n]arein the

openunit disk) andri areknownfor i=l,.., I0. gtrue[n] is assumedto becausal. This

assumptionis sayingthatweknow somecoarseboundingfunctionon theimpulseresponse
of thepartially knowndiscrete-timeplant. In Section5.2,thisassumptionis usedto
compute a frequency-domain bounding function on the estimation error.

AD 1.7) A bounding function on the magnitude of the impulse response of the additive plant

error, that is, we assume we know a bounding function of the same form as Eqn. (3.6.9) on

Igtrue[n] - g[n,00]l, for all 00¢ 0, where g[n,00] is the impulse response of G(z,00).

This assumption means that we know some coarse bounding function on the impulse

response of the additive plant error that is due to the unmodeled dynamics. In Section 4.4,

this assumption is used to make the time-domain parameter estimator robust to the effects of

the unstructured uncertainty.

AD1.8) zero initial conditions.

Thus, our a priori assumptions are that we know m 1 and n 1, the degrees of B(z) and A(z),

respectively, and the bounding functions Au(eJC°T ) and Vu(eJC°T). Further, we assume that the

parameter Vector 00 is in some known bounded set O, which is only a coarse and, hence, large a

priori estimate of the parameter space. We do not assume that the plant is minimum phase as is

done in the classical MRAC approach.

AD2) Disturbance Assumptions.

AD2.1) Id[n]l < dmax, Vn, and

AD2.2) the N-point DFT of the signal d+[n], defined as in Eqn. (3.5.5), satisfies

IDN+n(c°k)l <t DN+n(°_)' for n = 0, 1,.., N-2

for n_>N-l,

for k=0,..,N-1,

where the constant dma x is known and the time function DN+n(0_k) and the constant D--N(C0k) are

We assume that the unmeasurable disturbance din] satisfies:

(3.6.10)

(3.6.11)

known, for each o_,k.
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AD3) Input and Output Signal Assumptions. We assume that both the input signal u[n] and the

output signal y[n] are measurable and that u[n] is bounded.

AD3.1) lu[n]l < Uma x, Vn, where Uma x is known a priori. (3.6.12)

Remark 1; We note that the assumption of a stable plant (AD1.5) and a bounded plant input

(AD3.1) implies the boundness of the plant output. Thus, even in a closed-loop situation the plant

output is bounded. However, such a closed-loop system could exhibit wild oscillations with u[n]

oscillating between +Urea x and -Urea x. We emphasize that this is not the kind of stability that we

are looking for. Instead, we seek a closed-loop system that has all its poles in the open unit disk.

In this case, if the plant control input never saturates, that is, lu[n]l remains less than Uma x, then we

have an exponentially stable closed-loop system.

Remark 2: The parameter vector 00 can be thought of as a specific value. However, based on

input/output measurements alone we cannot determine a specific 00 for the nominal model because

of the unstructured uncertainty. That is, if we assume the structure of ADI.1 above and assume

only that

8u(Z) E S where S = { _(z)[ 18(oJcoT)l < Au(e_coT), Vco }, (3.6.13)

then we can define a smallest set

O* = { 0 I Gtrue(Z) = G(z,0) [1 + _Su(Z)] and _u(Z) _ S } (3.6.14)

in which 00 lies. Thus, 00e O'CO where only O is known a priori. Note that, in general, (9*

will be a point only when Au(eJcoT)=0 for all co.

Remark 3: As has already been noted, assumptions AD1-3 above can be satisfied using the

information of assumptions AC1-3 of Section 3.2. Specifically,

1) ADI.I-2 follow from ACI.I-2 and the results of Subsections 3.3.1 and 3.3.4.

2) AD1.3 follows from AC1.3 plus AC1.1-2 and the results of Subsections 3.3.2 and 3.3.4.

3) AD1.4 follows from AC1.4 plus ACI.I-3 and the results of Subsections 3.3.3 and 3.3.4.

4) AD 1.5 follows from AC1.5.
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5)AD1.6 andAD1.7 follow from AC1.6andAC1.7,respectively,andtheresultsof Section
3.4.

7) AD1.8 follows from AC1.8andtheassumptionthatthezero-orderholdhaszeroinitial
conditions.

8) AD2.1 and3.1follow from AC2.1and3.1,respectively.
9) AD2.2 follows from AC2.2andtheresultsof Section3.5.

3.7 Discrete-time Statement of the Robust Estimation Problem and Solution

Summary

In this section, we will state the robust estimation problem and then outline the problem

solution which will be developed in the following chapters of this thesis.

3.7.1 Robust Estimation Problem Statement

Since complex adaptive control algorithms will ultimately be implemented on a digital

computer, we focus on the development of discrete-time estimation methods. We can use a

discrete-time estimator to identify the zero-order hold equivalent of a continuous-time plant. It was

shown in Sections 3.3-3.5, how the continuous-time assumptions AC1-3 of Section 3.2 could be

used to satisfy the discrete-time assumptions AD1-3 of Section 3.6. Thus, we will use these

discrete-time assumptions as a starting point for our problem statement.

We rewrite the true discrete-time plant of Eqn. (3.6.1), formed via the zero-order hold

equivalence of the continuous-time plant, as

Gtrue(Z) = G(z, 0) [1 + 8su(Z, 0)], § _ O (3.7.1)

where again G(z, 0) is the nominal model using an estimate § of the true parameter vector 00 in the

structure of assumption AD 1.1, and 8su(Z, 0) denotes the modeling error due to both structured

and unstructured uncertainty. That is, since a priori we only know that 0 _ O, where 0 is not

necessarily in ®*, there is structured uncertainty associated with this choice of 0 as well as the ever

present unstructured uncertainty.
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Problem Statement: The robust estimator must provide:

1) a parameter estimate 0 and, hence, a n0min_l model G(z, 0),

2) a corresponding bounding function, Asun(e jc°T, 0), such that

18su(ejc°T, 0)1 < Asun(e jc°T, 0), _'co. (3.7.2)

That is, at a given sample time n we want to generate a new nominal model G(z, 0), and a

corresponding bounding function Asun(ej _T, 0) in the frequency domain indicating how good the

current nominal model is. The robust estimator need only provide the above information at the

times that a control-law update is computed.

The goal of the robust estirnator is to find a 0 in O* and have Asun(e j°_T, 0) approach

Z_u(eJe°T). The viewpoint taken here is that the unstructured uncertainty Au(eJ°)T) is the best we

can do given the structure of our nominal model. If the bound Au(eJC°T) is chosen to be larger than

the actual unmodeled dynamics, then parameters can be found for the finite-dimensional nominal

model that yield a smaller uncertainty bound than Au(ej°)T ). Thus, the robust estimator can yield a

total uncertainty bound Asun(e jc°T, §) that is even smaller than Z_u(eJC°T). In the robust estimator,

we will not let Asun(e j°)T, 0) become smaller than our a priori assumed bound Au(eJC-°T), when

computing control-law updates. We view the function Au(eJC°T) as the desirable lower bound of

the function Asun(e jc°T, 0).

The problem that we have described in this subsection will be referred to as the robust

estimation problem. An algorithm which satisfies this problem will be referred to as a robust

estimator since it provides a nominal model of the plant as well as a guaranteed frequency-domain

bounding function on the accuracy of this nominal model.
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3.7.2 Outline of Problem Solution

In the following two chapters of this thesis, we will develop a solution to the robust

estimation problem stated in the previous subsection." First, in Chapter 4, we will describe a robust

time-domain parameter estimator for plants with unstructured uncertainty and an unmeasurable

disturbance. Then, in Chapter 5, we will describe a frequency-domain parameter estimation

method. Thus, we will present two methods of generating a parameter estimate and, hence, the

nominal model, one being a time-domain method and the other being a frequency-domain method.

Later, in the simulations, we will reveal some weaknesses of the specific algorithm employed in the

time-domain parameter estimation method of Chapter 4, so we will choose to use the

frequency-domain parameter estimator over the time-domain parameter estimator. In Chapter 5 we

will also develop a frequency-domain bounding methodology that will yield a set of points versus

frequency which upper bound the magnitude of the function 8su(_J_T, 0) at those frequency

points. We will see that the frequency-domain methods of Chapter 5 will require extensive

real-time computations.
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CHAPTER 4.

ROBUST TIME-DOMAIN PARAMETER ESTIMATION

4.1 Introduction

In this chapter, we will develop a new type of deterministic, discrete-time parameter

estimator. First, we will motivate the use of a robust time-domain parameter estimator. Then, in

Sections 4.2-4, we will develop a mechanism to bound, in the time-domain, the effects of both

unmodeled dynamics and an unmeasurable disturbance. Lastly, in Section 4.5 this bounding

mechanism will be used together with a time-varying dead-zone to make a least-squares parameter

estimator robust.

Most current parameter estimation techniques provide unreliable estimates in the presence of

unmodeled dynamics and an unmeasurable disturbance. For example, assume that a large,

persistently exciting, sufficiently rich signal was present for a long time so that the algorithm's

parameter estimates were good. Then, assume that the input signal suddenly became zero but the

dis .t.urbance continued to excite the system. In this case, the parameter estimates would diverge

from their previously good values. As another example, consider what happens when the plant

input signal excites the high-frequency unmodeled dynamics, that is, the dynamics we constrain

with the unstructured uncertainty bound. In this case, the plant output signal is greatly affected by

the high-frequency unmodeled dynamics so that the parameter estimates yielded by standard

estimation techniques will have very little to do with the actual parameters of the low-frequency

nominal model. We need an algorithm which will adjust the parameter estimates when there is

good information about the parameters in the input/output data but we want the algorithm to stop

updating the estimates when there is no useful information available.

It is the goal of this chapter to develop an algorithm that can be used with confidence in the

presence of unmodeled dynamics and an unmeasurable disturbance. The resultant time-domain

parameter estimator is actually a combination of the bounding mechanism that we develop in

Sections 4.2-4 and a modified least-squares algorithm that was developed by Goodwin et al.

[17,18]. This modified least-squares algorithm is made robust through the use of a time-varying

dead-zone. The new contribution of this chapter is the development of the time-domain bounding

mechanism of Sections 4.2-4. This mechanism uses the assumptions of the robust estimator, for

example the assumption of a frequency-domain bound on the unstructured uncertainty. Goodwin

et al. [17,i8] use a different bounding mechanism in their development of a robust parameter

estimator. Their bounding mechanism requires different types of assumptions than those used in

development of the robust estimator.
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4.2 Development of the Linear Regression Form of the Plant

4,2,1 Development of DARMA Form

Before presenting the time-domain parameter estimation algorithm, we will give some

definitions that allow us to represent our previous discrete-time transfer function of the nominal

model in a deterministic autoregressive moving-average (DARMA) form. We again consider the

discrete-time system of Figure 3.6 where

y[n] = gtrue[n] * u[n] + d[n]. (4.2.1)

and where '*' denotes convolution. We can use the forward shift operator q in the polynomials of

assumption AD1 of Section 3.6, to write

y[n] = [Gtrue(q)] u[n] + d[n] (4.2.2)

So,

= [ (B(q) / A(q) ) [1 + _u(q)] ] u[n] + d[n].

y[n] = [B(q) / A(q)] u[n] + [B(q) 8u(q) / A(q)] u[n] + d[n].

Multiplying both sides by the operator [A(q)] yields

[A(q)] y[n] = [B(q)] u[n] + [B(q) 8u(q)] u[n] + [A(q)] d[n].

Rewriting yields,

y[n] = [1-A(q)] y[n] + [B(q)] u[n] + [B(q) 8u(q)] u[n] + [A(q)] din].

We define the signal regression vector,

q_[n-1]=[y[n-1] y[n-2] ... y[n-n 1] u[n-nl+m 1] u[n-nl+ml-1] ...

Now, Eqn. (4.2.5) can be rewritten as,

y[n] = 0[n-1]T0 0 + e0[n],

where

(4.2.3)

(4.2.4)

(4.2.5)

(4.2.6)

u[n_nl ] ]T. (4.2.7)

(4.2.8)

e0[n] -- [B(q) 8u(q)] u[n] + [A(q)] din], (4.2.9)

and where 0 0 is the true parameter vector of the nominal model, as defined in AD1. Goodwin et al.

[17] observe that Eqn. (4.2.8) will, in general, be unsuitable for parameter estimation since the

error eo[n ] involves "near differentiation" of the input and the disturbance. As suggested in [17];

we will prefilter both the input and the output signals, u[n] and y[n], to avoid this problem. We
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definethefilter in theforwardshiftoperator,

F(q) -- q(nl) /W(q) (4.2.10)

where the polynomial W(q) has order n 1 or greater and has all its zeros in the open unit disk.

Now, we define the filtered versions of the input and output signals,

utin] = IF(q)] u[n],

yf[n] = [F(q)] y[n].

Multiplying both sides of Eqn. (4.2.5) by the operator [F(q)] yields

[A(q) F(q)] y[n] = [B(q) F(q)] u[n] + [B(q) F(q) _u(q) ] u[n] + [A(q) F(q)] d[n]

or

[A(q)] yf[n] = [B(q)] uf[n] + [B(q) F(q) 8u(q) ] u[n] + [A(q) F(q)] d[n].

Rearranging yields,

yf[n] = [1-A(q)] ytin] + [B(q)] uf[n] + [B(q) F(q) 8u(q) ] u[n] + [A(q) F(q)] d[n].

We define the signal regression vector containing the filtered signals,

_f[n-1]=[yf[n-1] yf[n-2] ... yf[n-nl] uf[n-nl+ml] uf[n-nl+ml.1 ] ...

Now, we see that F_,qn. (4.2.15) can be written as,

where

yf[n] = t_f[n-1]T00 + el[n],

(4.2.11)

(4.2.12)

(4.2.13)

(4.2.14)

(4.2.15)

uf[n_nl ] ]T.

(4.2.16)

(4.2.17)

el[n] -- [B(q) F(q) _u(q) ] u[n] + [A(q) F(q)] d[n]. (4.2.18)

In summary, we have developed a DARMA model for the discrete-time plant of Chapter 3.

Further, we have used filtering to avoid "near differentiation" of the signals, u[n] and d[n].

4.2.2 Decornposition of the Error Signal

In this subsection, we will introduce several definitions so that we can decompose the error

signal e 1[n] defined in Eqn. (4.2.18).

Hu(z) = B(z) F(z) _u(Z),

Hd(z) = A(z) F(z).

First, we define the transfer functions

(4.2.19)

(4.2.20)
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As canbeseenfrom Eqn.(4.2.18),Hu(z) is thetransferfunctionfrom theplant input to the

equationerrorel[n]. This transferfunctiondescribestheeffectof theadditiveplanterror,which is

dueto theunmodeleddynamics,on theequationerror. As canalsobeseenfrom Eqn. (4.2.18),

Hd(z) is thetransferfunctionfrom thedisturbanceto theequationerrorel[n]. We canrewriteEqn.

(4.2.18)as

el[n] = hu[n] * u[n] + hd[n] * d[n]. (4.2.21)

wheretheimpulseresponsesof Hu(z) andHd(z) aredenotedbyhu[n] andhd[n], respectively.We

decomposeEqn.(4.2.21)by defining

el[n] = e2[n] + e3[n], (4.2.22)

where

e2[n] = hu[n ] * u[n] (4.2.23)

e3[n] = hd[n] * d[n] (4.2.24)

The signal e2[n ] is the part of the equation error el[n ] that is due only to the unmodeled dynamics.

The signal e3[n] is the part of the equation error el[n] that is due only to the disturbance. To bound

el[n] at each time index n, we will find a time-varying magnitude bound on e2[n] and e3[n]

individually. That is,

lel[n]l < le2[n]l + le3[n]l. (4.2.25)

4.2.3 Outline 0f the Time-domain Error Bounding Technique

In the following two sections we will develop magnitude bounding functions on the

component parts, e2[n] and e3[n], of the equation error el[n] using the results of Theorem 2.4 of

Chapter 2. It will be advantageous to first find a bounding function on e3[n] since the results found

in this process will be useful in trying to find a bounding function on e2[n]. Given such a bound,

we will later be able to robustify the standard least-squares algorithm to the effects of unstructured

uncertainty and an unmeasurable disturbance.

Since the following two chapters are rather involved in their derivations of these bounds, it is

important to keep a perspective on what the important parts of the development are. As can be seen

from Theorem 2.4, we will be using essentially a frequency-domain methodology to find the

required time-domain bounding functions for e2[n] and e3[n]. However, we must also consider the

effect of the remainder terms due to the infinite-length of the impulse responses. To bound this
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effect,we mustuseacomplicated,conservativeschemein thecaseof e2[n],sincewechoseto use

only theassumptionslistedin Section3.6. We are forced to take this approach since we want

guaranteed bounds. It is stressed that, although the development is lengthy, the bounding of the

remainder terms due to the infinite-length of the impulse responses, is only a relatively minor part

of our development. We want to provide rigorous bounds, however, the chief contribution to our

time-domain bounds will be due to the frequency-domain summations, not the generally smaller

remainder terms.

4.3 Time-domain Error Bounding of Disturbance Effects

4.3.1 Different Bounding Meth0dolo_es

In this section, we will find a magnitude bounding function on e3[n ]. This signal is the

effect of the disturbance on the equation error. We note that Hd(z ), which is the transfer function

from the disturbance to the equation error, must have all its poles in the open unit disk since F(z)

has all its poles in the open unit disk. This means that the frequency-domain methods that were

developed in Section 2.2 can be applied. The signal e2[n ] can be bounded using one of three

methods, each of which we outline below:

We compute a magnitude bounding function on the DTP'T of d[n] using assumption

AC2.2 and Eqn. (2.1.12). Then, we find a magnitude bounding function on Hd(eJ°_T). These

two magnitude bounding functions are used, along with the equation for the inverse DTFT to

compute a magnitude bound on e3[n], in a way similarly to that used for the inverse DFT in

Theorem 2.4.

Mh__M.e.k_._.q[._We compute a magnitude bounding function on hd[n], which will be of the same form

as the bounding function of assumption AD 1.6,

_gi n(ri) Pi n. (4.3.1)

i=l

Then, the summation formulas in Appendix C can be used to compute the constant bounding

function,
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le3[n]l < dmax{ 2., Ihd[n]l },
n--O

where dma x is known from assumption AD2.1.

(4.3.2)

Method 3: We compute a magnitude bounding function on Hd(eJe°k T) for each k, and a magnitude

bounding function on hd[n] which again, will be of the form of Eqn. (4.3.1). Then we use

assumption AD2.1-2 and Theorem 2.4 to find a magnitude bounding function on e3[n].

Discussion:

We choose to use method 3 from above since it uses assumptions AD2.1-2 rather than

AC2.2, as does method 1. Later, we will concentrate on the investigation of the properties of the

DFTs of different disturbance models. It would complicate matters if we were instead to work with

the Fourier transform of the disturbance and then have to perform the frequency-domain folding of

Eqn. (2.1.12). In addition, later in the frequency-domain bounding methodology of Chapter 5, we

will also be using a magnitude bounding function on the DFT of the disturbance, that is, the

function of assumption AD2.2. Thus, we choose to work entirely with the DFT of din].

However, we do note that method 1 does not require knowledge of a magnitude bound on din], as

do both methods 2 and 3. This is because our ultimate goal here is to bound the error signal e3[n],

not the disturbance itself.

Method 2 is not used since it will, in general, be more conservative than method 3. This

statement of relative conservativeness actually depends on how good the different bounds of AD2.1

and AD2.2 are relative to one another. For example, if a tight bound on the magnitude of the DFT

of the disturbance is known and only a coarse bound on Id[n]l is known, then method 3 will yield a

tighter bounding function on le,3[n]l than method 2. However, if only a coarse bound on the

magnitude of the DFT of the disturbance is known and a tight bound on Id[n]l is known, then

method 2 could yield a tighter bound on le3[n]l.

As a final note, we point out that method 3 actually contains dements of both methods 1 and

2. That is, method 1 is essentially a purely frequency-domain methodology, and method 2 is a

purely time-domain methodology, while method 3 uses both frequency-domain and time-domain

bounding methodologies, as is evident from Theorem 2.4.
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4.3.2 Development of a Bounding Function using Method 3

First, we find a magnitude bounding function on Hd(e_C°kT), for k=0,.., (N/2), where we

assume that N is even. Recall that o_k is defined in Eqn. (2.1.4). At this point in our development,

we must include the fact that the transfer function Hd(z ) is actually a function of the parameter

vector 0, which is only coarsely known. That is, using Eqn. (4.2.20), and assumptions AD 1.1-2,

Hd(z,0) = A(z,0) F(z), where 0 _ O. (4.3.3)

Thus, we find that,

IHd(eJC°kT,0)l < Hd(eJt°kT), for k = 0,.., (N/2), (4.3.4)

where

_-Id(ejC°kT) = sup { IA(eJO_kT,0)l } IF(eJtakT)l, for k - 0,.., (N/2). (4.3.5)
0_O

The above bounding function is computed off-line as part of the design procedure.

To f'md a magnitude bounding function on the impulse response of hd[n] we must include its

0 dependence. The structure of Hd(z,0 ) is known, as is apparent from Eqn. (4.3.3), so we can

find an expression for hd[n,0] in terms of the parameter vector 0. Thus, assumptions AD 1.1-2

have allowed us to define the following bounding function,

< hd[n], Vn, (4.3.6)Ihd[n,0]l

where

hd[n ] = sup { Ihd[n,0]l ], for n = 0, 1,..
0_O

(4.3.7)

Since the transfer function F(z) has all its poles in the open unit disk, the bound of Eqn. (4.3.7)

will be of the form,

hd [n] = _ gi n(ri) Pi n, (4.3.8)

i=l

where 0 < Pi < 1, 'v'i, and the largest Pi corresponds to the slowest pole of F(z). For simplicity, we

assume here that

hd In] = gl Pl n, for n = 0, 1,.. (4.3.9)
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GivenEqns. (4.3.4-5), the bounding function hd[n], plus dma x

AD2.1, we can use Theorem 2.4 to find,

le3[n]l < -e3[n],

where

e3[n ] = 1 { Hd(eJa_3 T) DN+n(co0 ) + 2
N

and "DN+n(eJ°'_k T) from

(N/2)-I

Hd(ejc°k T) "DN+n(o.,-k)
k=l

(4.3.10)

+ Hd(ejCo(N/2) T) DN+n(co(Nn))}+ 2 dma x _ h--diP],
p=N

forn = 0 .... N-2,

and where using Eqn. (4.3.9) and Eqn. (C.4) of Appendix C, we find

h_d[P] = gl Pa N / (1- Pl).

p=N

(4.3.11)

(4.3.12)

m m

For n > N-l, e3[n] equals e3, a constant. Thus, with reference to assumption AD2.2,

(N/2)-I

e3 = i { Hd (ej°0w) _N(O_0) + 2 _ Hd(eJ°_ T) _N(a,,'k)
N k=l

+ Hd(eJ°_(N/2) T) _N(O_(N/2))}+ 2 dma x _ hd[P]" (4.3.13)

p=N

In summary, we have computed a time-varying bound on the magnitude of e3[n], which is

the component of the equation error that is due to the disturbance. For n > N-1, the bounding

function becomes a constant. A method for bounding the remainder term due to the fact that hd[n]

has an infinite-length rather than finite-length impulse response has been developed. This method

has been illustrated through the use of a simple fin'st-order bounding function. The bounding

function of Eqn. (4.3.11) and the bound of Eqn. (4.3.13) are computed off-line as part of the

design procedure.
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4.4 Time-domain Error Bounding of the Effects of Unstructured Uncertainty

In this section, we will find a magnitude bounding function on e2[n ]. This signal represents

the effect of the unstructured uncertainty on the equation error. We note that Hu(z) must have all its

poles in the open unit disk since we know that both F(z) and B(z)8(z), via assumption AD1.5, have

all their poles in the open unit disk. Thus, we can apply the frequency-domain methods developed

in Section 2.2. While it is possible to use any of the three methods listed in Subsection 4.3.1, we

will be using method 3, since we will be able to find a good frequency-domain bounding function

on IHu(eJ°)kT)l, but will only be able to fred a very conservative bounding function on Ihu[n]l. A

magnitude bounding function on the DFT of the input signal will be computed on-line and used in

combination with a precomputed bounding function on IHu(eJt°kT)l to compute, on-line, a

time-varying bound on _.2[n]l.

4.4.1 Computation of a Ma_t_nitude Bounding Function on Hu(eJt°k T)

First, we f'md a magnitude bounding function on Hu(eJC°kT), for k=0,.., (N/2), where we

assume that N is even. Again, recall that o)k is defined in Eqn. (2.1.4). Now, we must include the

fact that the transfer function Hu(z) is actually a function of the parameter vector 0, which is only

coarsely known. That is, using Eqn. (4.2.19), and assumptions ADI.I-2,

Hu(z,0) = B(z,0) F(z) _u(Z), where 0 _ @. (4.4.1)

Using ADI.I-3, we find

IHu(eJt-°kT,0)l < Hu(eJ°)kT), for k = 0,.., (N/2), (4.4.2)

where

Hu(eJ°°k T) = sup [ IB(eJ°)kT,0)l ] IF(eJ°°kT)l Au(eJc°kT). (4.4.3)
0cO

for k = 0 .... (N/2).

The above bounding function is computed off-line as part of the design procedure.
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4.4.2 Computation of a Magnitude Bounding Function on hu[nl

The magnitude bounding function on hu[n] is difficult to compute. Recall that hu[n] is the

impulse response of the transfer function from the plant input to the equation error. The required

bounding function will be found using assumptions AD 1.1-2 and AD 1.7; however, the resulting

Consider the model for the true plant which wasbounding function will be conservative.

introduced in AD1,

Gtrue(Z) = G(z,0) [1 + 8u(Z)].

Then the impulse response of Gtrue(Z) can be written as,

gtrue[n] = g[n,0] + g[n,0] * 8u[n]

(4.4.4)

(4.4.5)

where the impulse responses of G(z,0) and 8u(Z) are denoted by gin,0] and gu[n], respectively.

Now, we find that

Ig[n,0] * _u[n]l = Igtrue[n]- g[n,0]l. (4.4.6)

In order to simplify our notation, we define the impulse response

hgs[n,0] = g[n,0] * 8u[n]. (4.4.7)

From assumption AD1.7 and Eqns. (4.4.6-7), we know a bounding function hgs[n] such that

Ihgs[n,0]l < h'gs[n], Vn, (4.4.8)

m

where hg5[n] is of the form of assumption AD1.6, that is,

h-gs[n] = _ gi n(ri) Pi n. (4.4.9)

i=l

Note that the largest Pi of Eqn. (4.4.9) corresponds to the slowest pole of Gtrue(Z). At this point,

we will assume for simplicity that Ihgs[n,0]l can be bounded by a simple first-order system, that is,

we assume that

hg_[n] = g2 P2 n, for n = 0, 1,.. (4.4.10)

have not explicitly bounded 18",,[n]l, but have instead bounded Ig[n,0] * 8"u[n]l. We willThus, we
,u
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be able to use this bounding function on IhgG[n,0]l to f'md a bounding function on le2[n]l.

First, we observe that the transfer function corresponding to the impulse response hgG[n,0]

is given by

G(z,0) 8u(Z ) = B(z,0) 8u(Z) / A(z,0). (4.4.11)

We find from Eqns. (4.2.19-20) and (4.4.11) that,

Hu(z,0 ) = Hd(Z,0 ) G(z,0) 8u(Z), where 0 e O. (4.4.12)

The magnitude of the impulse response of Hd(Z,0) has already been bounded by the function of

Eqn. (4.3.7).

or

From F_,qn. (4.4.12) we find that

hu[n,0 ] = hd[n,0 ] * hgs[n,0 ]. (4.4.13)

n

hu[n,O]= Z hd[m,O]hgs[n-m,O]= Z hd[m,O] hg_[n-m,O] (4.4.14)
m=-** m--O

since hd[n,0] and hgs[n,0] are causal impulse responses. Now, we find that

11

Ihu[n,0]l _< _ Ihd[m,0]l Ihgs[n-m,0]l.
m_0

So, using Eqns. (4.3.6) and (4.4.8) yields

Ihu[n,0]l _< hu[n ], Vn,

where

n

h'u[n] = X h-dim] hgS[n-m] •
m--0

We now can use the assumed forms of Eqns. (4.3.9) and (4.4.10) in Eqn. (4.4.17) to find

n

n°m
h-u [n] = _ gl Pl m g2 P2 "

m---O

(4.4.15)

(4.4.16)

(4.4.17)

(4.4.18)

Manipulation yields
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n

h--u[n]- { gl g2 _ (Pl/P2 )m } P2 n"
m=O

(4.4.19)

We consider two possibilities in Eqn. (4.4.19). The following results are from Appendix D.

Case 1. ( Pl # P2 ) In this case,

h--u[nl = gl g2 [ (P2 n+l" Pl n+l) / (P2- Pl) ]" (4.4.20)

Case 2. ( Pl = P2 ) In this case,

m

hu[n] = { gl g2 (n+l) } pl n. (4.4.21)

m

More complex forms of the bounding functions hd[n] and hgs[n] are also considered in Appendix

D.

Given Eqn. (4.4.2), the bounding function h--u[n], Uma x from assumption AD3.1, and the

on-line computed values of IUNn(eJt-°kT)l we can use Theorem 2.4 to find,

where

le2[n] I < e_2[n] ' (4.4.22)

e,2[n] = 1
N

(N/2)-I

{ Hu(ejco0 T) IUNn(co0)l + 2 _ Hu(eJC-°k T) IUNn(Cok)l
k=l (4.4.23)

Oo

+ Hu(eJCO(N/2) T) IUNn(Co(N/2))l } + 2 Uma x ___ h--u[p], for n = 0, 1,..
p=N

Further, for the two illustrative cases of Eqns. (4.4.20-21), we find bounds on the infinite sum.

Case 1. ( Pl # P2 ) In this case, using Eqn. (C.4) from Appendix C we find that

X hu[P]
p=N

= [ gl g2 / (P2 - Pl)] [ pN+l / (1 - P2) - Pl N+I / (1 - Pl) ] (4.4.24)

Case 2. ( Pl = P2 ) In this case, using Eqn. (C.4) and (C.10) we find

h--u[p]

p=N

= gl g2Pl N ( N (1 - p]) + 1 ) / (1 - pl )2 (4.4.25)
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In summary,wehavecomputed a time-varying bound on the magnitude of e2[n ], which is

the component of the equation error that is due to the unstructured uncertainty. A method for

bounding the remainder term due to the fact that hu[n ] has an infinite-length rather than f'mite-length

ira. pulse response has been developed. This method has been illustrated using simple first-order

bounding functions. More complex forms of the various bounding functions are considered in

Appendix D. The bounding function of Eqn. (4.4.23) is based on a priori calculations and the

on-line computation of the DFT of the input signal.

4.5 Robustified Least-squares Parameter Estimation with Regularization

In this section, we will present a robust form of the standard least-squares parameter

estimator. This algorithm was developed by Goodwin et al. [17,18]. However, Goodwin et al.

use a different mechanism to find a time-varying bound on the equation error in reference [17] than

that used in this thesis. We utilize the assumed frequency-domain bounding function on the

unstructured uncertainty, as was discussed in Section 4.4, whereas, Goodwin et al. use a

time-domain method to compute their time-varying bound.

4.5.1 Completion of Equation Error Bounding

In this subsection, we will combine the results of Sections 4.2-4 and complete our

development of the bounding of the equation error signal el[n], which is the error due to the effects

of unstructured uncertainty and the disturbance as is defined by Eqn. (4.2.18). Using Eqns.

(4.2.25), (4.3.10) and (4.4.22) we find that

lel[n]l < el[n], Vn. (4.5.1)

where

e tn] =e2tn]+ e3[n],

and e2[n ] and e3[n] are given by Eqns. (4.4.23) and (4.3.11), respectively.

(4.5.2)

4.5.2 Goodwin et al.'s Robustified Least-squares Algorithm

In this subsection, we will present a modified least-squares algorithm that was developed by

Goodwin et al. [17,18]. This algorithm includes a time-varying dead-zone in a least squares

parameter estimator. This time-varying dead-zone is a robustifying mechanism that seeks to sort
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outgoodandbadinformationusinga typeof thresholdingin thetime-domain.Recently,this

methodhasappearedin the literaturein effortsto achieverobusmessin adaptivecontrollers.As

wasdiscussedearlier,wewill beusingadifferentmechanismto boundlel[n]l thanthatusedby

Goodwinet al. in [17]. Beftre wepresentthealgorithm,wemustfirst makeseveraldefinitions.

Withreferenceto Section4.2,wedefinethepredictionerror

e[n] -- yf[n] - t_f[n-1] T 0[n-l] (4.5.3)

where Cf[n-1] and yf[n] are given by Eqns. (4.2.16) and (4.2.17), respectively, and 0 denotes the

estimate of the parameter vector 0 0. Further, we define the parameter error vector as follows

O[n] - 0[n]- 0 0. (4.5.4)

Using Eqn. (4.2.17) in (4.5.3) yields

e[n] =- @f[n-1] T 0_n-1] + el[n]. (4.5.5)

Thus, the prediction error e[n] depends on both the parameter error vector and the error signal el[n]

due to the unstructured uncertainty and the disturbance. Since we have a time-varying magnitude

bound on el[n] given by Eqn. (4.5.2), we can make the least-squares algorithm robust. In

preparation for the definition of the parameter estimation algorithm, we define the dead-zone

function,

f[g,e} = e-g, ife>g

0, if lel<g

e+g, if e<-g.

We now present the robustified least-squares algorithm. From [18],

(4.5.6)

§[n] = 0[n-l] + a)[n] P[n-2] (_f[n-1] e[n]

1 + _f[n-1] T P[n-2] _f[n-1] (4.5.7)

P[n-1] = P[n-2] - .'p[n] Pln-2] 0fko.zk]_f[_!.l T Pin-21

1 + Cf[n-1] T P[n-2] el[n-l] (4.5.8)

with 0[0] and P[-1] given where P[-1] = P[-1] T > 0, and where
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_[n] =as[n] (4.5.9)
with

I D

s[n] = 0, if le[n]l < 13 el[n ]

f{ 13 el[n], e[n] }/e[n], otherwise,

where we choose ote (0,1) and 13is defined by

13= _/1/(1- c_).

Figure 4.1 illustrates the relationship between e[n] and sin].

(4.5.10)

(4.5.11)

/ \ s[n]

1

Figure 4.1: Dead-zone Illustration.

Remark 1: From Eqns. (4.5.10-11) and the definition of _[n], we see that there is a trade-off

between the adaptation gain o_ and the size of the dead-zone as controlled by the parameter 13. If we

choose the gain 0_large, that is, near unity, then 13will be much greater than unity so the dead-zone

will be very large and the algorithm will be turned-off most of the time.

We will now present a theorem that lists the properties of the robustified least-squares
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algorithmthathasbeendescribedin thissection. In thefollowing theorem,weshowthatthe

robustifiedleast-squaresalgorithmhaspropertiesthataresimilarto thestandardleast-squares

algorithm.Thefast andthirdpropertieslistedin thefollowing theoremarethesameasthe

propertiesof thestandard"least-squares"algorithmthatareprovenin [13]. Thesecondproperty
listedbelowis similar to ananalogousresultfor thestandard"least-squares"algorithmexceptthat

in theresultfor thestandardleast-squaresalgorithmtheerrorsignale[n]2appearsinsteadof

f{13el[n], e[n] }2. Theproofof Theorem4.1 hasbeenoutlinedin the literature [17,18].

Theorem 4.1:

1) [lO[n]ll _< q_:{P[-1]} 1]0'[0111, n_> 1

where _:{P[-1] } denotes the condition number of P[-1].

2) lira ff B elln1, ernl 12 = 0.

n...-_** 1 + Cf[n-1] T P[n-2] Cf[n-1]

3)_ II_tn]- 6tn-X]ll=0.

If Eqn. (4.5.1) holds, then the preceding algorithm has the following properties:

(4.5.12)

(4.5.13)

(4.5.14)

_oof: See Appendix E.

Remark 2: It can also be shown, see Appendix E, that

II_[nlll_<q_z{P[n-2]} II_[n-l]ll,n_>1. (4.5.15)

Thus, if the condition number of P is unity we see that the norm of the parameter error vector is

non-increasing. Later, in the simulations, we will see that the algorithm generally performs better

than the guaranteed properties of Eqns. (4.5.12) and (4.5.15).

Remark 3: If the signal vector ,f[n-1] and the matrix V[n-2] are bounded, that is, both II,f[n-llll

and IIPtn-2]IIare_rate,then property 2 of Theorem 4.1 implies that the error signal e[n] will

eventually be in the dead-zone. A further property of the above algorithm, which is proven in

Appendix E, is that

IIPtn-1]ll_<IIP[-llll<o., n_>1. (4.5.16)
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Thus,for boundedsignalswe conclude that the error signal eventually ends up in the dead-zone.

4.5.3 The Re_malarized Constant Trace Modification to the Least-so_ua_res Algorithm

As is discussed in Goodwin et al. [17;18], the update given by Eqn. (4.5.8) causes P to be

non-increasing and, in practice, the algorithm essentially turns itself off as n---->**. The problem is

the same as that encountered in the standard least-squares algorithm as is discussed in Goodwin

and Sin [13]. In practice, assuming that the input is rich, the basic robustified least-squares

algorithm has a very fast initial convergence rate, but the algorithm gain reduces dramatically when

the P matrix becomes small. To prevent this from happening, the robustified least-squares

algorithm can be modified. This will help maintain an overall fast convergence rate. We choose to

use the "regularized constant trace" modification that was introduced in [1]. This modification

yields a P matrix that has a constant trace. Thus, it keeps P from becoming small. The robustified,

regularized least-squares algorithm is described by using the same equations as in Subsection

4.5.2, except that instead of using Eqn. (4.5.8) to compute P, we use the following algorithm.

Regularized Constant Trace Algorithm:

Let c o and c 1 denote two positive constants, c I > c 0. Further, let m denote the number of

parameters and define

x = trace{ P[n-1] }.

The algorithm is as follows,

a) Set P[-1] = (c I/m) I.

b) Compute

P---In-I] = Pin-2] - ag[nl Prn-2l _ff.g:L_f[.0._ T Pin-2] .

1 + Cf[n-1] T P[n-2] Cf[n-1]

(4.5.17)

(4.5.18)

(4.5.19)
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c)Let

m

P[n-l]= P[n-1]+ ((cI-_)/m )I,

(coIx)Pin-l] + ((cI-cO)Im )I,

(4.5.20)

We will now present a theorem that lists the properties of the robustified least-squares

algorithm with the "regularized constant trace" modification. Ideally, we would like to be able to

prove the same properties as those listed in Theorem 4.1. In fact, we are able to prove the second

and third properties of Theorem 4.1 for our modified algorithm; however, we are forced to relax

the first property of Theorem 4.1 as we see below. Most of the proof of Theorem 4.2 has appeared

in the literature [1 ].

Theorem 4.2: If Eqn. (4.5.1) holds, then the modified algorithm defined by the use of Eqns.

(4.5.17-20) has the following properties:

1) ll_[n]ll_ q(_max{P[n-1]}/amin{P[-1]} I1 [0]11 I1 [0]11,nzl (4.5.21)

where t_ma x {. } and 6mi n {• } denote the maximum and minimum singular values of a matrix,

respectively.

2) lira f{ I1elrn l. eln1IZ____= O.
n-.._oo 1 + t_f[n-1] T P[n-2] t_f[n-1] (4.5.22)

3) lim II0In]- =0. (4.5.23)

n----)oo

Proof: See Appendix E.

Remark 4: It can also be shown, see Appendix E, that

II [n]ll_< 4 6max{P[n-1]} / 6min{P[n-2]} 116[n-1]ll,n > 1. (4.5.24)

Since the trace of P is kept constant by the modified algorithm, we find that if the condition number
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of P is unity for times n-1 and n-2, then Eqn. (4.5.24) would imply that the norm of the parameter

error vector would be non-increasing.

Remark 5: A further property of the above modified algorithm is that

IlPtn-l]ll_< trace{P[n-1]} =c 1, n > 1. (4.5.25)

Thus, for bounded signals we can conclude, as in remark 3, that the error signal eventually ends up

in the dead-zone.

In this section, we have described what we call the "robustified least-squares" algorithm.

This algorithm, due to Goodwin et al. [17,18], uses a time-varying dead-zone to achieve

robustness. A theorem listing the properties of this algorithm was presented. In addition, we

introduced a modification to prevent this parameter estimation algorithm from "turning-off'. In a

second theorem, we showed that the modified version of the robustified least-squares algorithm has

properties that are similar to the basic robustified least-squares algorithm.

4.6 Summary

In this chapter, we have developed a modified least-squares parameter estimator that is robust

to the effects of unstructured uncertainty and an unmeasurable disturbance. This robustified,

regularized algorithm uses only assumptions AD1-3 of Section 3.6. A flowchart illustrating the

development of this chapter is presented in Figure 4.2. First, we developed a bound on the part of

the equation error el[n ] that was due to the disturbance. The computation of this bound is an

off-line operation. We then set up a mechanism for computing a time-varying bound on the part of

the equation error that was due to the unstructured uncertainty. This time-varying bound is

computed on-line using the current DFT of the input signal. These component bounds are added to

form a bound on the equation error el[n ]. This equation error bound is used by the robustified,

regularized algorithm of Section 4.5 to control the time-varying dead-zone. Thus, we have

presented a complete methodology for robust time-domain parameter estimation.

Combining the parameter estimate of the algorithm of this chapter with the nominal model

structure of assumption AD 1 yields a nominal model that can be used for the computation of

control-law updates. Later, in the simulations, we will show that the dead-zone based parameter

estimator of this chapter has some weaknesses. Specifically, the dead-zone mechanism tends to

disable the parameter estimator much of the time, so the resulting parameter estimates are poor. In

the following chapter, a second method for generating parameter estimates for the nominal model

will be described. This alternate method is frequency-domain based and does not suffer from the
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problemsof the dead-zone based parameter estimator.

Compute
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Bound Hd,

Off-line

F.4n.(4.3.5)

Time-domain Bounding
of the

Disturbance Effects

Compute
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Off-line

Eqn. (4.3.7)

Compute
Bound"_ [n],

Off-line

Eqns. (4.3.11), (4.3.13)

Use Assumed

Bounds on the
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Disturbance

Compute

Transfer Fun_ction
Bound Hu,
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Eqn. (4.4.3)

Compute
DFT

of the Plant Input,
On-line

I 1

Compute

Impul_.._Response
Bound huand the
Remainder Term,

Off-line

Eqn. (4.4.17)

Compute
Bound"_ [n],

On-line

F.xln. (4.4.23)

Time-domain Bounding
of the Effects of

Unstructured Uncertainty

........................ (iiii iiiiiii............
Goodwin ct al.'s

Robust Time-domain
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CHAPTER 5.

FREQUENCY-DOMAIN PARAMETER ESTIMATION AND UNCERTAINTY

BOUNDING

5.1 Introduction

In this chapter, we will present a frequency-domain bounding methodology that yields a

frequency-domain estimate of the true plant as well as a bounding function on the modeling error in

the frequency domain. Using this frequency-domain estimate, we will compute a parameter vector

estimate using a type of weighted least-squares fit in the frequency-domain. Given'the parameter

vector estimate and, hence, a nominal model, we will compute a bounding function on the

modeling error with respect to this nominal model. The methodology will yield a set of points

versus frequency which bound the magnitude of the function 8su(eJmT , §) at those frequency

points. A smoothness condition is then. used to compute a continuous bounding function on the

magnitude of 8su(eJt°T, 0). To compute this continuous bounding function, we must bound the

variations of 8su(e j°_T, §) between the discrete frequency samples. The chapter is organized as

follows.

First, in Section 5.2 we develop the basic frequency-domain bounding algorithm. Then, in

Section 5.3 we address the problem of combining frequency-domain information that has been

learned during different time intervals. Frequency-domain parameter estimation is discussed in

Section 5.4. In Section 5.5, the computation of the error bounding function with respect to the

nominal model is discussed. In Section 5.6, two different philosophies concerning the modeling of

the unstructured uncertainty are presented. A methodology for smoothing our uncertainty

bounding function is presented in Section 5.7. In Section 5.8 we show how to bound inter-sample

variations of 15su(eJt°T, 0)1. Finally, in Section 5.9 we summarize our results. The key

contribution of this chapter is the development of the frequency-domain bounding methodology.

This new methodology is the most important part of the robust estimator in that it provides the

bounds on the frequency-domain estimation errors.

5.2 Frequency-domain Estimation and Error Bounding

In this section, we will develop a methodology for finding a frequency-domain estimate of

the true plant and a corresponding error bounding function on the frequency-domain modehng
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error.

5,2,1 Development of the Basic Methodolo_.

Consider the true discrete-time plant gtrue[n], whose input is u[n] and whose

disturbance-corrupted output is y[n]. Assuming zero initial conditions, we know that

y[n] = gtrue[n]*u[n] + d[n]. (5.2.1)

Then, using the notation of Section 2.1 and Theorem 2.1, we find that for some time index n,

YNn(O_k ) = Gtme(eJa'_k T) UNn(O_k ) + ENn(O_k ) + DNn(co k)

for k -- 0,.., N-I,

where from Theorem 2.2 we know that for some integer M,

with

IENn(C0k)l < ENn(_k), for k = 0,.., N-1

(5.2.2)

(5.2.3)

M-1

E_Nn(O)k)= _ Igtruetp]llUNn-P(o,-k)-UNn(O k)l+Erem, fork=0 .... N-l, (5.2.4)

p=l

where the remainder term is defined as

_rem = 2 Urea x _ p Igtrue[P]l,

p=M

(5.2.5)

and where r i is a positive integer, and gi > 0, 0 < Pi < 1, and r i are known for i=1 .... I0. Since

m

gtrue[n] is of the form of Eqn. (5.2.7), we can use the results of Appendix C to evaluate the
o

infinite summation term. For simplicity, we assume that

(5.2.6)

(5.2.7)

where

gtrue[ n] = gi nri Pi n
i=l

Igtrue[n]l < gtrue[n],

and where we know Uma x from assumption AD3.1. The integer M will be referred to as the

memory length. The choice of this important design parameter will be discussed later, in Section

6.6. Now, rewriting our assumptions for convenience, we know from AD 1.6 that
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gtrue[n] = g2 P2 n, for n = 0, 1,..

In this case, we use Eqn. (C. 10) to compute the bounding function,

M-1

ENn(C0k) = Z g2 P2 i IUNn'i(°)k) - UNn(°)k) I+
i=l

2 Uma x g2 P2 M ( M - M P2 + P2 ) / ( 1 - P2 )2, for k = 0,.., N-1.

(5.2.8)

(5.2.9)

The bounding function of Eqn. (5.2.9) can be computed on-line by using the current N-point DFT

of u[n] along with M-1 old N-point DFTs of u[n]. We note that the second line of the previous

equation can be made arbitrarily small by choosing M to be sufficiently large. However, as M is

increased so does the amount of the on-line calculations. This tradeoff wiU be discussed further in

Chapter 6.

Now, we define the frequency-domain estimate Gf, Nn(_k) and the corresponding

frequency-domain error Ef, Nn(_k).

From

Gf, Nn(Cok) = YNn(Cok ) / UNn(co k)

Ef, Nn(al k) = Gf, Nn(Cok) - Gtrue(eJa)kT), for k = 0,.., N- 1

Eqn. (5.2.2),

(5.2.10)

(5.2.11)

Ef, Nn(Cok) = ( ENn(cz_ k) + DNn(Cok) ) / UNn(CO k)

and using the triangle inequality we find,

 Ef, <-
where

(5.2.12)

(5.2.13)

m m

Ef, Nn(Cok) = ( ENn(co k) + DNn(Cok) ) / IUNn(COk)l,

and where ENn(Cok) is given by Eqn. (5.2.4) and

(5.2.14)

IDNn(COk)l _< DNn(Cok), for k = 0 .... N-1. (5.2.15)

n.

We will refer to Gf, Nn(O_k) as our frequency-domain estimate of the true plant at time index

Note that Gf, Nn(o_k) is the set of N complex numbers computed using the N-point DFTs of
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u[n] andy[n], which arecomputedon-line. Further,wewill refer to Ef,Nn(c0k) asthe

frequency-domainerrorboundingfunctionat timeindexn. In Eqn.(5.2.14),thebounding

functionENn(C0k)andIUNn(O_k)larecomputedon-lineat eachtimeindexn, while thefunction

DNn(C0k)is knownfrom assumptionAD2.2. If weassumethatn > N-l, that is, we assume that at

least N non-zero points of data have been collected so that, with reference to AD2.2,

DNn(Cok) = EJN(Oh, c) when n > N- 1, for k = 0 .... N- 1, (5.2.16)

then Eqn. (5.2.13) becomes

Ef, Nn(tt_k) = (ENn(C0k) + EJN(t.Ok) ) / IONn(t.Ok)l, when n > N-l, (5.2.17)

fork=0,..,N-1.

We note that Eqn. (5.2.17) gives us an idea of how large the input signal must be to achieve some

error bounding function Ef, Nn(a,_k) given the disturbance DFT bounding function _N(a,_k ). This

equation wiU be useful later, in Chapter 7, where we consider what kind of probing signal should

be introduced into the closed-loop adaptive system to enhance identification.

5.3 The Cumulative Frequency-domain Estimate and Error Bounding Function

In this section, we will discuss a straightforward technique for combining the

frequency-domain estimates and corresponding error bounding functions from different time

intervals. That is, we show how to combine all of the past frequency-domain information into a

cumulative estimate and cumulative error bounding function. The basic idea is that, at a given

frequency point ohm, we use the value of Gf, Nn(o_ k) that has the smallest corresponding error

bounding function Ef, Nn(O_k), at that frequency. To formalize this we define the cumulative error

bounding function at o k ,

Ecumf, Nn(O_k) = min { Ef, NP(O._k) }, (5.3.1)

p<n

and the cumulative frequency-domain estimate at ¢Ok,
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Ocumf, Nn(Cok)- { Gf,Nm(Cok) [ Ef, Nm(Ok ) = Ecumf, Nn(Cok) }.

The subscript "curer" in Eqns. (5.3.1-2) denotes the fact that they are the "cumulative

frequency-domain" estimate and error bounding function. We define, for time index n,

Ecumf, Nn(Cok ) -- Gcumf, Nn(C0k ) - Gtrue(_t'°kT), for k = 0,.., N-1.

Then Eqn. (5.3.2) ensures that at time index n,

IEcumf, Nn(C0k)l < Ecumf, Nn(t.Ok ), fork =0,.., N-1.

In practice, the following simple recursive algorithm will be used to compute Gcumf, Nn(Cok ) and

E-cumf, Nn(tok ) at a given frequency o.,k.

(5.3.2)

(5.3.3)

(5.3.4)

Algorithm:

If E'f, Nn(Cok ) < E'cumf, Nn-l(o)k ), then set

E'cumf,Nn(Cok)- Ef,Nn(Cok),and

Gcurnf,Nn(Cok) --Gf,Nn(Cok).

else, set

 cumf, = cumf, and

Ccumf,N"(,ok)=Ccume,N -l(ok).

(5.3.5)

For initial conditions, we use the a priori plant assumptions AD1. If the initial guess for the plant

corresponds to the parameter vector 01, then for n=0 we set the cumulative frequency-domain

estimate to the nominal model using 01, and set the cumulative error bounding function to the best

bounding function we can find using only a priori information. So, using our earlier notation, we

write
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Initial Conditions: (n = O)

Gcumf,Nn(Ok)=G(cJC°kT,00

E--cumf, Nn(rok ) = sup { IG(eJ°_kT,01) . G(eJ°'_kT,0)l + IG(eJ°)kT,0)l Au(eJ°kT) }
0aO

fork=0,.., N-1.

(5.3.6)

(5.3.7)

The above supremum are computed off-line. An important property of the above algorithm is that it

only updates the cumulative frequency-domain estimate and the corresponding cumulative error

bounding function when useful information is learned, at a given frequency.

As a final note, we observe that, since we are working with real-valued time-domain signals,

the properties of the DFTs of real-valued signals can be used to show that

Gcumf, Nn(Ok ) - G*cumf, Nn(CoN._k ), (5.3.8)

m

Ecumf,Nn(O)k ) - Ecumf, Nn(ON.k ), for k = 1,.., (N/2)-l, (5.3.9)

where '*' denotes complex conjugate and where we have assumed that N is even. This means that

the information for frequency points k--0,.., N-1 is contained in the information for the frequency

points k=0,.., N/2. We only need to estimate the plant for frequency points k--0,.., N/2.

5.4 Frequency-domain Parameter Estimation

In this section, we will show how the cumulative frequency-domain estimate of the previous

section can be used to find parameter estimates for the nominal model. We use the structure of the

nominal model and a type of weighted least-squares fit to the frequency-domain estimate

Gcurnf, Nn(Ok ). There are many ways that one could choose the nominal model parameters to fit

the cumulative frequency-domain estimate. The method that we present in this section is

computationally efficient, since it only requires the solution of linear equations.

The procedure is best illustrated by an example. Consider the nominal model,

G(z,00) = (b0z + bl) / (z 2 - atz - a2), where

00=[a 1 a2 b 0 bl ]T.

Using this nominal model structure we can write

(5.4.1)

(5.4.2)
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(z2 -alz -a2)G(z,00) = b0z + bI,

or

(5.4.3)

Since the parameters are assumed to be real-valued, we find

Re{z 2 G(z,0o)} = [ Re{z G(z,00) }

Im{z 2 G(z,00)} - [ Im{z G(z,00) }

Re{G(z,00)} Re{z} 1 ] 00, (5.4.6)

Im{G(z,00) } Ira{z} 0] 00. (5.4.7)

Thus, if we know the complex value of G(z,e 0) for some known z, we can find two linear

equations in the parameters. Our frequency-domain estimation method yields an estimate of the

plant at frequencies cok for k - 0,.., N/2. So, letting z = _C°kT for k = 0,.., N/2, we can

define a (N+2)x4 matrix A whose elements depend upon the complex values of some discrete

function of frequency. We write A( G(cJC°kT,o0 ) ) tO denote the fact that the matrix A depends

upon the values of the specific frequency function G(eJC°kT,00 ). We now define the form of the

matrix A and show how its elements depend on the values of the discrete frequency function that is

Used as its argument.

A(G(cJC°kT,00) )=

Re {eJc°0TG(eJ c°0T,00) } Re {G(eJc°0T,00)} Re{cJc°0T} 1

• • • •

Re{eJC°(N/2)TG_eJC°(N/2)T,00)} Re{G(eJC°iN/2)T,00) } Re{eJC°iN/2)T }

Im{ eJC°0TG(eJc°0T,00) } Im{O(eJC°0T,00) } Im{ejco0T}

_Ira{ eJC°(N/2)TG(*ejCO(N/2)T,0o)} Ira{ G(eJC°iN/2)T,0o) } Ira{ eJC°iN/2)T }

Similarly, we def'me the form of the (N+2) vector B and show how its elements depend on the

values of the discrete frequency function that is used as its argument.

0

O

0

(5.4.8)

z2 G(z,00) = [ z G(z,00) G(z,00) z 1 ] [ a 1 a2 b 0 b 1 ]T (5.4.4)

= [ z G(z,00) G(z,00) z 1 ] 00. (5.4.5)
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B( G(eJ°_kT,e0) ) =

Re{e2jc°0TG(eJ°_0T,00)}

Re{e2J°_(N/2)TGiej _(N/2)T,00)}

Ira{e2j°_0TG(eJ_0T,00) }

.I_m{e2j_(N/2)TGieJC°(N/2)T,00) } (5.4.9)

Using Eqns. (5.4.2) and (5.4.6-9) we can write,

A( G(eJC°kT,00 ) ) 00 - B( G(eJ°_T,00 ) ). (5.4.10)

This matrix equation is just a statement of Eqn. (5.4.3) at the frequency points z - eJO_kT for

k=0 .... N/2.

In summary, we have shown how knowledge of the complex values of G(eJ°3kT,00 ) at the

(N/2)+1 frequencies o_0 .... O_(N/2 ) can be used to write N+2 linear equations in the parameters.

In the ideal situation, where one could exactly f'md frequency values that correspond to a system

G(eJ°_kT,00 ) for k=0 .... (N/2), the matrix equation (5.4.10) will have awith the nOlrlinal st3_ctt_e

solution. That is, since we assume that N is greater than the number of parameters, Eqn. (5.4.10)

will have more linear equations than the number of parameters. In this case, for Eqn. (5.4.10) to

have a solution, the frequency values that are used in the A and B matrices must correspond to a

system with the assumed structure of the nominal model. However, in practice we will only have

our cumulative frequency-domain estimate Gcumf, Nn(Cok ) with which to estimate the parameters. Ii

we use Gcumf, Nn(o_) instead of G(eJ°_T,00 ) in Eqns. (5.4.8-9), then the equation

A(Gcumf, Nn(o_)) 0 = B(Gcumf, Nn(O_k ) ) (5.4.11)

will not, in general, have a solution. In Eqn. (5.4.11) we denote the matrices A and B whose

elements depend on the discrete function of frequency Gcumf, Nn(o_) by A( Gcumf, Nn(O_k ) ) and

B( Gcumf, Nn(O_k ) ), respectively. The elements of A( Gcumf, Nn(O_k ) ) and B( Gcumf, Nn(Cok )
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dependon thecomplexvaluesof Gcumf,Nn(ra_k) in thesameway thatA(G(eJtX_kT,00)) and

B( G(eJr'°kT,00) ) dependonG(eJ°_T,00) in Eqns.(5.4.8-9).We notethatEqn.(5.4.11)is in the

form of thestandardleast-squaresproblemthatis discussedin Strang[33].

We will choosetheparameterestimate§ asthevectorthatminimizesthefrequencyweighted

normof theerrorvector,

A( Gcumf,Nn(Cok) ) §- B( Gcumf_Nn(rx_k) ). (5.4.12)

Wedefine,with referenceto Eqns.(5.4.8-9),thediagonalfrequencyweightingmatrix,

W -- diag[ f(r.o 0) f(col), .., f(o_(N/2 )) f(r.o0) f(col), .., f(o_(N/2 )) ]. (5.4.13)

where fro) is the frequency weighting function. The parameter estimate that minimizes the norm of

theerrorvector

W (A( Gcumf,Nn(Cok )) 0- B(Gcumf,Nn(o_) ))

isgiven by the weU-known result,

= (ATwTwA) -1 ATwTwB

(5.4.14)

(5.4.15)

where the A and B matrices in this equation depend on the values of the estimate Gcumf, Nn(C0k ).

To gain insight as to What weighting function to choose, we examine Eqns. (5.4.3-5).

Consider the use of the above methodology using the estimate ¢3(z). Then, we find that the error

z2_3(z) - [ z¢3(z) (3(z) z 1 ] 00 = (z 2 - alz- a2)(3(z) - (b0z+ b 1) (5.4.16)

= (z 2 - alz - a2) (G(z) - G(z,00) ) (5.4.17)

So,

IG(z) - G(z,00)l = I z2G(z) - [ z(3(z) G(z) z 1 ] 001 / Iz2 - alz- a21. (5.4.18)

From Eqn. (5.4.18) we see that, if we want our parameter estimation method to be a least-squares

fit in the frequency-domain, then we want to choose a weighting function that is one over the

magnitude of the denominator of the nominal model. That is, if we choose the frequency weighting

function

fl(e0) = 1/le j2r'°T - a 1 e jc°T - a21 (5.4.19)

then using z = ejr°T in Eqn. (5.4.18), we can write

C-c_ .
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i_(e_OT)_ G(ejoT,00) ] = fl(o ) l e_2OT O(_oT). [ e_OT _3(ejoT) _(eJOT) ejoT 1 ] 00l

(5.4.20)

Thus, by using the weighting function of Eqn. (5.4.19), we actual find the parameter estimate that

corresponds to a least-squares fit, in the frequency-domain, between the estimate and the nominal

model. Of course, we do not know what the parameters a 1 and a2 really are. We only have our

coarse a priori bound on the parameter space. So, one can only approximately choose the

frequency weighting function of Eqn. (5.4.19) using our coarse a priori knowledge of the

parameters a 1 and a2.

5.5 An Uncertainty Bounding Function for the Nominal Model

In this section, we discuss the computation of a discrete, frequency-domain error bounding

function for the nominal model G(eJ°k T, 0). In addition, we will compute a magnitude bounding

function, Asun(eJ°k T, 0), on the uncertainty 8su(eJ°k T, 0) at the frequency points corresponding

to o k for k=0, .... N-1. In the following sections, we will shown how to obtain a continuous,

frequency-domain bounding function on 18su(eJ°T, §)1 for all o, using the discrete bounding

function that will be computed in this section.

The nominal model at time index n is obtained by using the nominal model structure and the

current parameter vector estimate §. Thus, we can compute the value of the nominal model

G(eJ°k T, 0) for k---0,.., N-1.

Using the triangle inequality, we find that at time index n, and for frequency o k,

IG(eJt°k T, §)- Gtrue(eJ°kT)l <

IG(eJ°k T, §) - Gcumf, nn(ok)l + IGcumf, Nn(rx_k )- Gtrue(eJ°kT)l.

and, using Eqns. (5.3.3-4),

IG(eJ°k T, t_)- Gtrue(eJ°kT)l < IG(eJ°k T, 0)- Gcumf, Nn(0)k)l + E--cumf, Nn(Ok ).

We can now find a bound on 8su(eJ°k T, 0). Rewriting Eqn. (3.7.1),

(5.5.1)

(5.5.2)
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Gtme(eJ%T )= G(cJcokT, §) [1 + 8su(CJcokT,(_)],fork = 0,.., N-I.

So, rearrangingyields,

8su(eJcokT,§) = [Gtrue(_cokT) -G(eJcokT,§) ]/G(cJcokT, §).

Using Eqn. (5.5.2),we findthe bounding function,

18su(eJcokT, §)l < Asun(eJcok T, 0),

where

(5.5.3)

(5.5.4)

(5.5.5)

Asun(cJC°kT, 0) =

{ IG(cJcokT, (_)-Gcumf, Nn(cok)l+ E--curnf,Nn(cok) }/IG(_JcokT, 0)I,

fork = 0,.., N-I. (5.5.6)

and where we have includeda superscript'n'aftertheAsu todenote the factthatthisbound on

18su(CJcokT,§)Idepends on the time index n, sinceGcumf, Nn(cok),E'--curnf,Nn(cok)and also (_

depend on n. The uncertaintybounding functionofEqn. (5.5.6)nccd only bc computed bcforc

control-lawupdate.

In summary, we have shown how tocompute a discretefunctionAsun(eJcokT, §) that

bounds thenet effectofstructuredand unstructuredunccrtaintyof thccun'cntnominal modcl

G(cJcokT, §) relativetothe trueplant,atthefrequencies,co0,col'"•coN-l" Wc used the nominal

model structureof AD 1.1,the currentparameterestimate0,and the cumulativefrcqucncy-domain

estimateGcurnf,Nn(cok)and corrcspofldingcumulativeerrorbounding functionE--cumf,Nn(cok)

that were developed in Section 5.3.

5.6 The Effects of Unstructured Uncertainty on Frequency-domain Estimation

In this section, we will present two philosophies concerning the treatment of the unstructured

uncertainty 8u(Z ). We discuss how to treat the unstructured uncertainty when it is:

1) time-invariant, and 2) time-varying. The time-varying philosophy will require a modification of

our estimation methodology. This discussion is important since it describes how to modify the
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robustestimatorfor situationswherethephase of the unstructured uncertainty can change with

time.

5.6.1 Components of the Modeling Uncertainty_

In this subsection, we examine the components of the multiplicative modeling uncertainty

8su(Z). From Eqns. (3.6.1) and (3.7.1) we know that,

Gtrue(Z) = G(z,00) [1 + 8u(Z)] = G(z, I}) [1 + 8su(Z, 0)] (5.6.1)

where we do not show the time dependence of § for convenience of notation. Rearranging yields,

8su(Z, §) -- [ G(z,00) - G(z, §) ] / G(z, §) + [ G(z,00) / G(z, §) ] 8u(Z). (5.6.2)

We def'me the structured uncertainty,

8s(Z, §) = [ G(z,00) - G(z, §) ] /G(z, I}),

and the transfer function,

Hsul(z,00, t_) = G(z,e0) / G(z, t_)

(5.6.3)

(5.6.4)

so that we can write

_Ssu(Z, 0) = 8s(Z, t}) + Hsul(z,00, 0) 8u(Z). (5.6.5)

The methodology of Sections 5.1-5 can be used to find a frequency-domain bounding function on

18su(eJ_kT, 0)1 where sign cancellations can occur between the two terms in Eqn. (5.6.5).

5.6.2 Modeling the Unstructured Uncertainty: Two Philosophies

In Sections 5.1-5, we assumed that the partially known plant was linear and time invariant.

If the plant is truly time invariant, then the uncertainty bounding function of Eqn. (5.5.6) will be

able to bound the total uncertainty due to both structured and unstructured uncertainty. In this case,

we are actually identifying the unstructured uncertainty, although it is lumped together in the total

uncertainty. Since, in practice, the unstructured uncertainty may not be modeled well by a linear

time-invariant system, we suggest an engineering modification to the approach of Sections 5.1-5.

We suggest that the final uncertainty bounding function should not be permitted to become less than

the a priori bounding function on the unstructured uncertainty A u. Said another way, we don't
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requireour frequency-domain estimation method to identify the unstructured uncertainty. By

making sure that our final bounding function doesn't become less than Au, we guarantee that our

robust adaptive control system will, at least, be robust to the presence of the unstructured

uncertainty. We can take a more rigorous approach to this problem.

If we view the unstructured uncertainty 5u as being able, at any time, to have any phase and

any magnitude that is less than the bounding function A u, then we must modify our

frequency-domain bounding methodology. We will develop an approach that bounds not

18su(eJt'°kT, 0)1 but, instead,

18s(eJC°kT, 0)1 + IHsul(e_°_kT,00 , 0) 8u(eJ°-'kT)l. (5.6.6)

Although we continue to view the low-frequency dynamics of the plant as being time-invariant, we

allow in this second philosophy for the high-frequency unmodeled dynamics to be time-varying.

By bounding Eqn. (5.6.6), we are implicitly saying that the unstructured uncertainty can change to

any phase and our frequency-domain uncertainty bound will still be valid. We are guarding against

the possibility that during one period of time, the phases of the two terms in Eqn. (5.6.5) are

opposite, and during a later time period the phases of the two terms are the same. So, if we

identified the plant during the period when the terms were of opposite phases, and updated the

compensator based on this information, then the system would not be robustly stable in the face of

the later situation where the terms add. In this philosophy, we only want to ask our

frequency-domain bounding methodology to identify the structured uncertainty. We use our a

priori bounding function to account for the unstructured uncertainty. If we want our robust

adaptive controller to be truly robust in an environment where the unstructured uncertainty can be

changed, but must always satisfy our a priori bound, then the following methodology must be

used.

5.6.3 Computing a Robust Uncertainty Bounding Function for the Time-varying Case,

In this subsection, we will compute a frequency-domain bounding function on Eqn. (5.6.6)

using the bounding function Asun(eJ°_k T, §) of Eqn. (5.5.6) that satisfies

18su(eJe°kT, §)1 _< Asun(eJ°)k T, 0), for k = 0 .... N-1.

Using the triangle inequality and Eqn. (5.6.5) we find that

(5.6.7)
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18s(eJ°_kT,§)1_<18su(eJ°)kT, 0)1+ IHsul(eJ°_kT,0o,§) 8u(edC°kT)l (5.6.8)

< Asun(eJC°k T, 0) + IUsul(eJ°)kT,0o , 0)1 au(eJ°_kT). (5.6.9)

Thus, we find that

18s(eJ_kT, 0)1 + IHsul(eJC°kT,00,0) _u(eJC°kT)l (5.6.10)

5 Asun(eJC°k T, 0) + 2 IHsul(eJ°'_kT,0o, 0)1Z_u(eJ°)kT ). (5.6.11)

This allows us to define the robust frequency-domain bounding function _su n that satisfies

18su(eJC°£T,0)l < 18s(eJ°)kT,0)l + ISsul(eJC°kT,0o, 0) 8u(eJ°)kT)l < _sun(eJC°k T, 0),

fork=0,.. ,N-1 (5.6.12)

where

_sun(eJ°)k T, §) = Asun(eJ°)k T, 0) + 2 _sul(eJ°)kT,00 , 0) Au(eJ°)kT) (5.6.13)

and where

_sul(eJ°)k T) = rain{ [1+ Asun(eJ°)kT,0)] / [1- Z_u(eJ°)kT)l,

sup IHsul(eJC°kT,0o, 0)1 }. (5.6.14)

0o, _e O

The fn'st term of the above minimum is considered only when _u(eJ°_ T) < 1. The supremum in

Eqn. (5.6.14) can be computed off-line; however, Hsu 1 must be computed on-line since it uses the

on-line computed function Asu n. The first term in the minimum of Eqn. (5.6.14) is derived from

the fact that

IG(eJC°kT,0o) / G(eJ°)k T, §)1 = I[1+ 8su(eJ°)kT, §)] / [1+ 8u(eJC°kT)]l. (5.6.15)

which can be shown using Eqn. (5.6.1).

5.6.4 Section Summary

In this section, we have discussed two different ways to find a bounding function on the

uncertainty. If we assume that the unstructured uncertainty is time-invariant, then we use the
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boundingfunction Asu n that was derived in Eqn. (5.5.6). However, if the unstructured

uncertainty can change its phase with time, then we must use the robust bounding function hsu n

that was derived in Eqn. (5.6.13). In Sections 5.7 and 5.8, we will use the bounding function

Asu n, corresponding to the time-invariant philosophy, in all of the derivations. If the time-varying

philosophy is more appropriate in a given problem, then the robust bounding function _su n could

be used in place of Asu n, in the equations of Sections 5.7 and 5.8. The robust bounding function

2Xsun is more conservative than the bounding function Asu n for the time-invariant philosophy.

5.7 A Smoothed Uncertainty Bounding Function

In this section, we discuss the computation of a smoothed, magnitude bounding function,

_sun(e-J 0_T, 0), on _isu(_ °_T, 0) through the use of the magnitude bounding function

Asun(eJC°k T, §), which was computed in Section 5.6, and a smoothness condition. This

smoothness condition is the magr}i'tude bounding function on the derivative of 8su. First, we will

derive a conservative value of the smoothness condition using only a priori information. Then, a

tighter smoothness condition will be computed using the on-line knowledge of the bounding

function _Ssun(eJ°_k T, §).

5.7.1 Computing a Worst-case Bounding Function on the Magnitude of the Derivative of 3su

.Using Only a priori Information

In this subsection, we will use only a priori information to compute a worst-case bounding

function on IdSsu(eJC°T , 0) / de01. We will express the derivative of _Ssu in terms of the derivative of

8u so that assumption AD1.4 of Section 3.6 can be used. From Eqn. (5.6.1) we know that,
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8su(Z,6) = [G(z,00) / G(z, §)] [1 + 8u(Z)] - 1. (5.7.1)

We seek a magnitude bounding function on the derivative of 8su(Z, 0) with respect to frequency.

We find,

dSsu(eJ o)T, 0) / do) = (dSsu(Z, 6) / dz)

So,

(deJ o)T / do)). (5.7.2)
z-__ejo)T

IdSsu(eJ o)T, 6) / do)l = T IdSsu(Z, 6) / dzl [.
Iz=ejo)T

A similar equation holds for dSu(eJo)T)/do). From Eqn. (5.7.1) we find that,

(5.7.3)

dSsu(Z, 6) / dz = [ Q(z. 6) (dG(z.O o) / dz) - G(z.O o) (dGfz. 6) / dz) ] [1 + 8u(Z)l +

G(z, 6) 2

^

+ [G(z,00) / G(z, 0)] (dSu(z) / dz). (5.7.4)

We def'me,

Hsu2(z,e0, 6) -- r G(z. 6) (dG(z.O 0 / dz) - G(z.O 0) (dGfz. 6) / dz) ]

G(z,0) 2

so that we can write,

(5.7.5)

dSsu(Z, 0) / dz = Hsu2(Z,00, 0) [1 + 8u(Z)] + Hsul(Z,00, 0) (dSu(Z) / dz),

where Hsu I was defined in Eqn. (5.6.4). We note that, when

Hsu2=0. So,

dSsu(Z, 6) / dz = dSu(Z ) / dz.

Continuing our bounding development, it can be shown, using the triangle inequality, Eqns.

(5.7.3) and (5.7.6), and assumptions AD1.3-4, that

IdSsu(e jo)T, 6) / do)l _<

T IHsu2(eJo)T,00, 6)1 [1 + Au(eJo)T)] + IUsul(eJo)T,00, 6)1Vu(eJo)T), Vo).

(5.7.6)

6 is close to00, thenHsul=land

(5.7.8)

(5.7.7)
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In theabove equation, we know that 00 e O; however, we must include an additional fact

concerning the estimated parameter vector 0. Since we know that the true parameter vector 00 is in

O, it is reasonable to constrain our parameter vector estimate § to be in O. We note that the

parameter vector estimate resulting from either of our parameter estimation methods is not

necessarily in O. Thus, the raw parameter vector estimate yielded by these estimators will be

projected onto the set O to produce the final parameter vector estimate. This is the justification for

the statement.

Now, using Eqns. (5.7.8-9) we compute a "worst-case" a priori bounding function,

IdSsu(eJcoT, §) / dcol < Vsu,wc(_JcoT )

where,

Vsu,wc(ejcoT ) =

(5.7.9)

(5.7.10)

sup { T IHsu2(ejcoT, e0, 0)1 [1 + Au(ejcoT)] + IHsul(ejcoT,00, 0)1Vu(ejcoT ) }, k/co

00, §e e (5.7.11)

This bounding function is computed off-line.

5.7.2 Computing a Tighter Bounding Function on the Magnitude of the Derivative of _isu

Using On-line Information

In this subsection, we will derive a tighter bounding function on the magnitude of the

derivative of _Ssu by using knowledge of _Ssu that is gained on-line. The worst-case bounding

function of Eqn. (5.7.11) can be very conservative. That is, in Eqn. (5.7.11) we must assume that

0 0 and § can take any values in the parameter space. While, 0 0 and 0 may be far from one

another initially, if there is sufficient excitation, then 0 will eventually become closer to 0 0. In this

case, we can compute a tighter bounding function using our on-line knowledge of the magnitude
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bounding function on _isu, which tells us how close our estimate is to the true plant.

Now, from Eqns. (5.6.1) we know that,

1 + Gsu(Z, 0) = Gtrue(Z) / G(z, 0) = G(z,00) [1 + _Su(Z)] / G(z, 6).

We seek a magnitude bounding function on the derivative of _Ssu(Z, 0) with respect to frequency.

Using Eqns. (5.7.4) and (5.7.12) it can be shown that,

(5.7.12)

dGsu(Z, 6) / dz = [ (dG(z.O0)/..4_G(z,O0)_ (_lG(Z.G(z,0)/dz)6)] [1 + 5su(Z, 6)] +

We define,

+ [G(z,00)/G(z,6)](dGu(Z)/dz). (5.7.13)

Hsu3(Z,00,0) = [ (dG(z.00/._d__. (dG(z.0)/dz) ] (5.7.14)
G(z,00) G(z, 6)

so that we can write,

dSsu(Z, 0) / dz = Hsu3(Z,00, 6) [1 + 8su(Z, 6)] + Hsul(z,00, 6) (d_Su(Z) / dz) (5.7.15)

where Hsul.Was defined in Eqn. (5.6.4). Continuing our bounding development it can be shown,

using the triangle inequality, E.qns. (5.7.3) and (5.7.15), and assumption AD1.4, that

IdSsu(CJc°T,0) /dcol< T IHsu3(e0t'°T,o0,6)I[I + Asun(C_c°T,0)1 + IHsu1(eJc°T,00,6)IVu(cJc°T),

Vco.

Now, usingEqns. (5.7.16)and (5.7.9),we compute the bounding function,

IdGsu(eJmT, 6) / dml < Vsun(e jc°T)

with

(5.7.16)

(5.7.17)

Vsun(cJc°T)= sup {T IHsu3(CJc°T,00,0)I } [l+Asun(CJc°T,6)]+ Hsul(CJ c°T)Vu(cJc°T) },

O0, 6_ ® _'o_, (5.7.18)

where Hsul(e j°_T) was defined in Eqn. (5.6.14).

The above bounding function of Eqn. (5.7.18) can be generated using the on-line computed

bounding function Asun(e jc°T, 6). Thus, as Asun(e jc°T, 6) becomes smaller, so does our
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boundingfunctionVsun(eJ°_T).In F_.qn.(5.7.18)andin Eqn.(5.6.14),which is usedin Eqn.

(5.7.18),thesupremumsfor Hsu1andHsu3arecomputedoff-line.

5.7.3 Using the Smoothness Condition tO Find a Tighter Bound on the Magnitude of _su

In this subsection, we will use the bounding function on the magnitude of the derivative of

5su that was derived in the previous subsection, and the discrete bounding function on I_sul that

was found in Section 5.5, to compute a tighter bound on I_sul. This development is motivated by

the observation that, depending upon the spectrum of the input signal, one may have a very jagged

bounding function on the modeling uncertainty 18su(eJ°_T , 0)1. That is, at the frequency point cok

the bound Asu n (eJt°k T, §) may be very tight, however, at an adjacent frequency point 0._k+ 1 the

bound Asun(_°_+l T, §) ) may be very poor. This situation is illustrated in Figure 5.1.

A su

o

()C)( I( _C)( )0
(t I

)

()(_()0
()

00()(

i
i

o k

Figure 5.1: Illustration of the Need for Smoothing.
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We canusethederivativeboundingfunctionVsun(ejc°T) to smoothourraw boundingfunction

Asun(eJO"kT, 0). However,wemustfirst provethefollowing theorem.

The0rcm 5.1:

an open set that includes the unit circle. If a real constant h is known such that

h = sup Idg(e jv)/dvl

v_ [a,b]

then

Let g(z) be a complex-valued function of a complex variable and let it be analytic on

(5.7.19)

Ig(eJV)l < h Iv - at + Ig(eJa)l, for v _ [a,b]. (5.7.20)

_oof: Expressing g(z) in polar form,

g(z) = r(z) e jO(z)

we define the composite function

g(eJ v) = r(eJ v) eje(eJv)

(5.7.21)

(5.7.22)

where r(_ iv) and 0(eJ v) are real-valued composite functions of the real variable v. We differentiate

to find

dg(eJ v) / dv = (dr(eJ v) / dv) ej0(ejv) + r(eJ v) eJ 0(ejv) j (d0(eJ v) / dv) (5.7.23)

= [ (dr(eJ v) / dr) + j r(eJ v) (d0(eJ v) / dv) ] eJ 0(eJv). (5.7.24)

So, we find

Idg(eJ v) / dvl 2 = Idr(eJ v) / dvl 2 + Ir(e iv) (dO(eJ v) / dv)l 2

=, Idr(e jv) / dvl < Idg(e jv) / dvl.

(5.7.25)

(5.7.26)

Since g(z) is analytic in an open region that includes the unit circle, we know that the real-valued

composite function r(e jv) of the real variable v is differentiable. Using the mean-value theorem

yields,

r(eJ v) = (dr(eJ v) / dv) I (v- a) + r(eja), for v _ [a,b], where c _ (a,b), (5.7.27)
I v=C
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=* r(eJ v) < Idr(eJ v) / dvl I Iv- al + r(eja), for v _ [a,b], where c _ (a,b).
I V=¢

Eqn. (5.7.20) follows from Eqns. (5.7.19), (5.7.26) and (5.7.28).

Q.E.D.

and

Assuming the analyticity of 8su, it can be shown, using Theorem 5.1, that

15su(eJ°_T, 0)1 < 18su(eJ°'_k T, 1})1+Ico- tOkl Vsu,in(o}k,O_k+l )

18su(eJ°}T, 0)1 _< 18su(eJ°_k+lT , §)1 + I%+ 1 - col Vsu,in([_,a_k+l )

for_ [O_k,O_k+l] where

(5.7.28)

(5.7.29)

(5.7.30)

Vsu,in(o)k, mk+l) = sup { Vsun(e jc°T) }, (5.7.31)

o_ [O}k,Olk+l]

and Vsun(e jc°T) is given by Eqn. (5.7.18). Using Eqns. (5.7.29-31) we see that

18su(eJC°k+lT, §)1 < 18su(eJC°kT, §)1 + IO._k+1 - o_1Vsu,in(o)k,O_k+l ) (5.7.32)

and

18su(eJ°_kT, 0)1 < 18su(eJ°)k+ 1T, §)1 + Io_k+ 1- e>kl Vsu,in(°_k,C°k+ 1)" (5.7.33)

From these equations we see that it may be possible to obtain a tighter bound on 18su(eJ°_T, 1_)1

than Asun(eJ°_ T, §), by using the bound at an adjacent frequency point, Asun(eJ°_k-1 T, 0) or

Asun(eJ°'_k+l T, §), along with the smoothness information of Vsu,i. This observation is useful,

since an input signal can have a lot of energy at a given frequency point but very little energy at an

adjacent frequency point. By tippling our new lower bound from, first the tight and then the left,

in terms of the ordering of the frequency points, we can find two new, tighter bounds on

15su(eJmkT, 0)1. That is, we improve on our bound first by using information from the left (lower

frequencies) and then by using information from the right (higher frequencies). In Figure 5.2, we

show how information can be used from the lower frequency point COk_1 and the higher frequency
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point o_k+lto find atighterboundatfrequency_. In this figure, theinformationfrom thelower

frequencypoint cok-1providesthetightestboundatfrequencya_k.

A
Q su

Slope -- +Vsu,i (cok-l' cok ) ~ / Slope = -Vsu,i (cok' cok+l )

()'"- ASU =Asu,1

v

cok-1 cok cok+l co

Figure 5.2: Illustration .of Smoothing.

The notation for this figure is defined below. However, we fin'st define

coinc - a'_k+l - °_k - ¢°s / N (5.7.34)

where again cos is the sampling frequency. Then, the two smoothed bounding functions are given

by the following recursive equations where the T and 'r' denote rippling the new bounds from the

left and the right, respectively.

Left Bound:

Asu,ln(eJcok T, §) = min { Asu,ln(eJcok- 1T, _)+coincVsu,in(cok_l,cok ), Asun(eJcok T, t}) }

for k= 1,2 .... N/2

where Asu,ln(eJco0 T, §) = Asun(eJ¢°0 T, t}). (5.7.35)
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gtgJ _Eo_og 

Asu,n(eJ°_k T, 0) = rain { Asu,rn(e_°_k+ 1T, _)+¢OincVsu,in(o)k,O)k+ 1)' Asun(eJC°kT, 0) }

for k = (N/2) - 1, (N/2) - 2, .., 0

where Asu,rn(eJ°_(N/2) T, 0) = Asun(eJ_(N/2) T, 6). (5.7.36)

We define the composite smoothed bounding function,

Asun(eJ°)k T, 0) = rnin { Asu,ln(eJ°)k T, 0), Asu,n(eJC°k T, 0) }

for k = 0,.., N/2,

which satisfies

18su(eJC°kT, 0)l < Asun(eJ°_ T, 0) < Asun(eJC°k T, 0), for k = 0,.., N/2.

(5.7.37)

(5.7.38)

Since the impulse response corresponding to the transfer function 8su(Z, 6), is real-valued, we

know that,

18su(e, JC°(N-k)T, 6)1 = 18su(eJC°k T, 0)1 < Asun(eJ°)k T, 0) < Asun(eJC°k T, 0),

for k = 1,.., (N/2)-l. (5.7.39)

Thus, we need only compute the various bounding functions for k = 0,.., N/2, since the

information for the frequency points k = (N/2)+l,.., N- 1 is contained in the information for the

frequency points k = 0,.., (N/2).

As a final note, we point out that the on-line computed bounding function Asu n is used to

compute the derivative bounding function that is used along with Asu n itself to compute a new,

smoothed bounding function Asu n. Thus, the newest smoothed bounding function could be used

recursively to yield yet a tighter smoothed bounding function. That is, the newest smoothed

bounding function could be used to compute a tighter derivative bounding function and, hence, a

tighter new smoothed bound. We will not pursue the possibilities for recursion further, as it is not

likely to greatly improve the bounding function. As a final note, we point out that the computation

of the smoothed bounding function is an on-line operation that cannot be performed in a parallel

fashion. That is, we must compute in a series fashion, the recursion of Eqns. (5.7.35-36) for each

frequency point.
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5.8 Bounding Inter.sample Variations

In this section, we discuss the computation of a safety factor that must be added to the

smoothed, discrete bounding function Asun(eJeOk T, §) to account for inter-sample variations.

Ultimately, the uncertainty bounding function at discrete frequency points will be used in

stability-robustness tests to update the compensator. The stability-robustness tests really use an

uncertainty bounding function that is a continuous function of frequency. Since the actual

computations will be performed with the uncertainty bounding function that is a discrete function of

frequency, we must add the aforementioned safety factor to the discrete function to account for the

worst possible peaks that may occur between frequency samples cok. We will choose this additive

safety factor in such a way that the largest inter-sample variations lie below a line drawn between

the final values of the uncertainty bounding function at two adjacent frequency samples. This idea

is illustrated in Figure 5.3, where we have yet to define the notation in the figure. Now, since

8su(eJ°_T, §) is assumed to be analytic, we can use Eqns. (5.7.29-30) to find,

18su(e j°_T, 6)1 < rain [ 18su(eJC°kT, 6)1 + I¢o %1 n_ - Vsu,i (°-_k,°_k+ 1),

n
18su(eJ°_k+lT, 6)1 + 100k+1 - col Vsu,i (O_k,_k+l) } (5.8.1)

for co a [0._k,O._k+l]. Thus, we define a discrete bounding function Asun(ej°'_k T, t_) that includes

the additive safety factor and that satisfies

18su(eJ(°k T, 6)1 <_ Asun(eJa_k T, fi), (5.8.2)

where, using Eqn. (5.8.1), we choose

Asun( eJ C°kT, 6 ) = Asun( eJC°kT, _ ) + (COinc / 2 ) max { ff su,in( o__ 1 '°_k )' V su,in( ¢Ok,COk+ 1) }'

where

Xsun(eJ°_0 T, 0) =

Asun(eJ_°(N/2) T, 0) =

for k = 1,.., (N/2)-l,

Asun(eJ_0 T, t}) + (COinc / 2) Vsu,in(m0,O_l )

Asun(eJ_(N/2) T, 0) + (_inc / 2) nVsu,i ((°(N/2)- l'°_(N/2))"

(5.8.3)

(5.8.4)

(5.8.5)
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Again, the values of Asun(eJ°_k T, 0) for k=(N/2)+l,.., N-1 can be found from the values of

A-sun(OJ°'_k T, §) for k=l,.., (N/2)-l. By using the bounding function of Eqns. (5.8.3-5), we

guarantee that a line drawn between the values of Asun(oJ°)k T, §) and Asun(eJ_t'_k+ 1T, _) will

bound 18su(eJ°)T , §)1 for co _ [¢Ok,O)k+l]. This is illustrated in Figure 5.3.

-A-su (eJ C°kT)

A--su (e j ¢°k+ 1T)

(coin c / 2) Vsu, i

Asu (eJ ¢°kT)

 c/2vsui
Asu (ej ¢°k+lT)

I )

cok °_k+ 1

(¢Ok+ 1- co) Vsu,i + Asu (ej ¢°k+lT)(_ - _k ) Vsu,i + A'su(e j ¢°kT) --

v

CO

Figure 5.3: Bounding Inter-sample Variations.

5.9 Summary

In this brief section, we will place the results of this chapter in perspective and then

summarize the methodology for computing the f'mal uncertainty bounding function. In this chapter,

we have developed frequency-domain methodologies for 1) finding a parameter estimate and,

hence, a nominal plant model; and 2) finding a frequency-domain bounding function on the

modeling uncertainty corresponding to this nominal model. It is emphasized that the

frequency-domain error bounding methodology requires only a parameter vector estimate to do its

job. This parameter estimate can come from either the robustified least-squares parameter
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estimator,which uses time-varying dead-zone, or the frequency-domain parameter estimator of

Section 5.4. Later, in the simulations, it will be shown that the dead-zone based parameter

estimator has some weaknesses, so the frequency-domain parameter estimator will be the parameter

estimator of choice.

Since the development of this chapter has been quite involved, we present the summarizing

flowchart of Figure 5.4. This flowchart shows what computations are done off-line, on-line at

every sample time, and on-line before a control-law update. Further, since the computation of the

final uncertainty bounding function requires several steps, we summarize the steps of this

procedure.

Uncertainty Bounding Procedure:

1) Compute the raw bounding function, Asu n, on 18su I [Eqn. (5.5.6)].

a) Time-invariant Unstructured Uncertainty Philosophy: Use Asu n in Step 2.

b) Time-varying Unstructured Uncertainty Philosophy: Use 2Xsun in Step 2 [Eqn. (5.6.13)].

2) Compute the smoothness condition, Vsu n, on IdSsu/dC01 based on Asu n (or _su n)

[Eqn. (5.7.18)].

3) Compute the smoothed bounding function, _su n, on 18sul using Asu n (or hsu n) and Vsu n

[Eqn. (5.7.37)].

4) Compute the final uncertainty bounding function, A--sun, including the safety factor, on I_sul

using _su n and Vsu n [Eqns. (5.8.3-5)].
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CHAPTER 6.

DESIGN CHOICES, DISTURBANCE MODELING AND COMPUTATIONAL

ISSUES

6.1 Introduction

In this chapter, we will discuss how to choose various design parameters, such as the

sampling period, the DFT length for both the time-domain parameter estimator and the

frequency-domain estimation method, and the memory length M. In addition, questions of how to

specify the bounding functions in the assumptions of the robust estimator and how to model the

disturbance are examined in this chapter. We also consider the computational requirements of the

robust estimator.

First, in Section 6.2, we consider the choice of the sampling period that is used in our

sampled-data control system, which controls the continuous-time plant. Since we are interested in

the robust estimator primarily for the purpose of closed-loop control, we must consider both the

identification and control impact of the sampling period choice. Several different models for the

additive output disturbance are examined in Section 6.3. The specification of the bounding

assumptions of the robust estimator are discussed in Section 6.4. We will examine the design

choices for the time-domain parameter estimator and the frequency-domain bounding methodology

in Sections 6.5 and 6.6, respectively. In Section 6.5, we will consider the choice of the DFT

length from the perspective of the time-domain parameter estimator alone. That is, it would be

convenient if the DFT length that is used in the bounding mechanism of the time-domain parameter

estimator was the same as the DFT length that is used in the frequency-domain bounding

methodology, since then we would only have to compute one DFT of the input signal at each time

index. However, we shall see in this chapter that the time-domain parameter estimator of Chapter 4

will, in general, require a shorter DFT length than the frequency-domain bounding methodology of

Chapter 5. Thus, in the respective sections, we will use the notation N t and Nf to refer to the DFT

lengths corresponding to the time and frequency domain methods, respectively. In Section 6.7, we

examine the computational requirements of robust estimator by examining. The key contributions

of this chapter are the completion of the robust estimator design methodology and the investigation

of the extensive computational requirements of the robust estimator.
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6.2 Choice of Sampling Period and Closed-loop Objectives

The choice of the sampling period in the robust estimator involves a tradeoff between the

target closed-loop bandwidth which we're trying to achieve and the deleterious effects of the

high-frequency unmodeled dynamics on the identifier. To better understand this tradeoff, in

Subsections 6.2.1 and 6.2.2, we will first investigate how the choice of sampling period affects

our achievable closed-loop bandwidth and the performance of our robust estimator. Then, in

Subsection 6.2.3, we will examine the tradeoff that arises.

6.2.1 Sampling Period Choice and the Closed-loop Bandwidth

In this subsection, we assume that the designer has some target closed-loop bandwidth that

he wishes to achieve. In the field of digital control, sampling rates are typically chosen to be

between 6 and 10 times the target closed-loop bandwidth, which we denote by COte1. This is only a

rule of thumb since some applications require faster sampling rates. The phase shift at C0tc1, due to

the delay of the discrete-time control system, can be computed as follows.

Phase shift at cotcl (in degrees) = -360 ° / (cos / cotcl ) (6.2.1)

where again the sampling frequency is given by

cos = 2 rc / T (6.2.2)

where T is the sampling period. We compute the following values.

Table 6.1: Sampling Period Choice and the Phase Shift at the Target Closed-loop Bandwidth.

____(_s/mtcl ) I Phase shift at 03tc 1 (in degrees)
5 I -72 °
10 I -36 °

15 I -24 °
20 I -18 °

Thus, given no other constraints, we want to choose the sampling period as small as possible so as

not to introduce a large negative phase shift near the crossover frequency of the system.

6.2.2 Sampling Period Choice and the Disturbance

In Subsection 2.1.2, we saw that to avoid aliasing effects, we must choose the sampling
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frequencycossuchthatO_s/'2is greaterthanthelargestfrequencyatwhich the disturbance has

significant energy. In practice, the anti-aliasing filter of Figure 3.1, whose presence we do not

include in the analysis of this thesis, will attenuate the disturbance at high frequencies. See Astrom

and Wittenmark [31, p.28] for a discussion of anti-aliasing filters. Since we explicitly include

aliasing effects into our bounds, as in Eqn. (3.5.2), we will not consider this point further.

6.2.3 Sampling Period Choice and Identification Objectives

In this subsection, we consider how to choose the sampling period so as to have good

performance of our robust estimator. Our goal is to choose the sampling period so that the

high-frequency unmodeled dynamics will appear small in magnitude, in the discrete-time model of

the plant. It was shown by Rohrs et al. [21], see Section 3.3, that the larger the sampling period

is, the smaller the continuous-time unmodeled dynamics will appear in the discrete-time plant.

Figures 6.1-2 illustrate how the choice of sampling period affects the discrete-time unmodeled

dynamics. In Figures 6.1 and 6.2, We show the magnitude bounding function on the discrete-time

unstructured uncertainty for two different choices of sampling period, T a and T b, where (COs)a and

(COs)b are the corresponding sampling frequencies. It can be seen that the smaller the sampling

frequency is, the smaller the magnitude of the unstructured uncertainty will be. Thus,

slow-sampling leads to a discrete-time system that can be modeled accurately by the low-frequency

nominal model.

6.2.4 The Tradeoff Between Closed-loop Bandwidth and Identification Goals

In this subsection, we summarize the tradeoff involved in the choice of the sampling period.

We want our sampling frequency cos to be 6-10 times the target closed-loop bandwidth COtc1 and we

want O_s/2 to be smaller than the frequency at which the unmodeled dynamics magnitude bound

becomes greater than unity. Figure 6.3 illustrates this situation. In this figure, we have denoted

the frequency at which the unstructured uncertainty magnitude bound becomes greater than unity by

C0mc1, the maximum closed-loop bandwidth. That is, the closed-loop system cannot have a

bandwidth greater than COme1 and still be robustly stable to the unstructured uncertainty shown in



Chapter6 Page118

thefigure. With thisnotationin mind,weconsiderthefollowing examples.

If mine1= 10mtc1andwechoosems -- 10COte1,then (ms / 2) = (1 / 2) mmc 1.

In this example, we are able to meet all of our objectives for the choice of the sampling period.

That is, since (m s / 2) < mmc 1, the unstructured uncertainty will appear small in the discrete-time

plant for this choice of sampling frequency. Now, we consider a more difficult case.

Example 2: If mmc 1 = mtc I and we choose cos = 10 mtc 1, then (m s / 2) = 5 mmc 1.

In this example, we see that (m s / 2) > mmc 1 so the unstructured uncertainty will appear large in the

discrete-time plant. Thus, for this example, we see that when the maximum closed-loop bandwidth

that is consistent with stability-robustness requirements is desired, the unstructured uncertainty will

have a large effect on the robust estimator.
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Figure 6.1: Continuous and Discrete time Unmodeled Dynamics for Sampling Period T a.
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Figure 6.2: Continuous and Discrete time Unmodeled Dynamics for Sampling Period T b < T a.

Notice that for the faster sampling period, the unmodeled dynamics bound is larger at high

frequencies.



Chapter6 Page120

Magnitudt

0 db

Target Closed-loop

Bandwidth
Maximum

Low-frequency Closed-loop Bandwidth

Dynamics m¢,,_,L_

of the Plant

I CO

,%

\

\

\
N

\
\
\

\
\
\

N

N

v

0_

Figure 6.3: Frequency Diagram for Sampling Period Choice.

6.3 Specification of the Bounding Functions in the Assumptions

6.3.1 Introduction

The specification of the bounding functions of assumptions AC1.3-4 and, hence, AD 1.3-4

of Chapter 3, are examined in this section. The landmark paper by Doyle and Stein [34] provides

an insightful discussion of the multiplicative, unstructured uncertainty plant representation which

we use throughout this thesis. This paper motivates the use of the unstructured uncertainty plant

representation and mentions various physical phenomena that can be characterized in this way.

Later, in the simulation part of this thesis, we shall generate the magnitude bounding function on

the unstructured uncertainty in a rather artificial way, since we are not motivated by a specific

physical example.

While the bounding function of assumption AC1.3 (or AD1.3) has become a widely used

uncertainty representation, the smoothness assumption of AC1.4 (or AD1.4) has not been used

previously in the literature. The specification of a magnitude bounding function on the derivative of

the unstructured uncertainty is even more difficult than the specification of a magnitude bounding
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function on the, only coarsely known, unstructured uncertainty itself. The specification, from

physical principles, of the smoothness condition of AC1.4 may be difficult. In the following

subsection, we will examine several examples in an effort to better understand the requirement of

assumption AC1.4.

6.3.2 Understanding Assumptions AC1.3-4 and AD1.3-4

In this subsection, we will examine three examples of high-frequency unmodeled dynamics

and will compute the bounding function of assumption AC1.4 for each. Intuitively, the unmodeled

dynamics are largest in the high-frequency range, that is, in the frequency range above the

crossover frequency of the system. The low-frequency dynamics of the plant are assumed to be

captured by the low-frequency nominal model, in which the uncertainty is structured. We now

consider three simple examples to gain insight.

Example 1; (First-order pole) Consider the hypothetical multiplicative uncertainty,

1 + 8eu(s) = a/(s + a), where a > 0 and (6.3.1)

where, in practice, 'a' is a high-frequency pole, relative to the poles of the nominal model. Then,

we f'md that,

5Cu(s) = - s / (s + a).

We compute,

18Cufj03)l = co / _/o2 + a2 , and

IdSCu(j03) / d031 = a / (032 + a2).

We consider the following special cases:

Low-frequency Case: If 03 << a, then

18Cu(,j03)l -- 03 / a,

Id_Cufj03) / d031 -_ 1 / a.

High-frequency Case: If 03 >> a, then

18Cu(j03)l-_ 1,

Id_SCu(j03) / d031 = a / 032.

(6.3.2)

(6.3.3)

(6.3.4)

(6.3.5)

(6.3.6)

(6.3.7)

(6.3.8)
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Thevalues of 15Cufjco)l and IdSCufjco)/dcol are shown in Figure 6.4 for a=l rad/sec. Thus, if we

know that the multiplicative uncertainty is composed _ of a fn'st-order pole, then we can bound

IdSCu(jo)/dol using a lower bound on 'a', the magnitude of the high-frequency pole.

Example 2: (Second-order pole) Consider the hypothetical multiplicative uncertainty,

1 + 8Cu(s) = C0n2 / (s 2 +,2 4 COns + COn2),

where we assume 4 < 1 and note that, in practice, COnis a high frequency relative to the natural

frequencies of the nominal model. Then, we find

SOu(S) = - S (S + 2 4 COn) / ( s2 + 2 4 COns + COn2).

We compute,

18Cu(jCO)l= CO"q"0.,̀2 + 4 42 COn2 / q (co2 _ con2)2 + 4 42 ¢0n2 co2 , and

IdSCu(jco) / dcol = 2 ton 2 q co2 + 42 COn2 / [ (CO2_ COn2)2 + 4 42 ton 2 co2 ].

We consider the following special cases:

L0w-frequency Case: If co << COn' then

18Cu(jCO)l = (2 4 / COn) CO,

IdSCu(jCO) / dCOl = 2 4 / ¢on -< 2 / con"

Resonant-frequency Case: If co = con' then

18Cu(jCO)l =- q 1 + 4 42 / (2 4),

IdSCu(jCO) / dCOl = q 1 + 42 / (2 4 2 COn)"

High-frequency Case: ff CO>> COn' then

18Cu(jCO)l = 1,

IdSCu(jCO) / dCOl -- 2 COn2 / CO3.

(6.3.9)

(6.3.11)

(6.3.12)

(6.3.13)

(6.3.14)

(6.3.15)

(6.3.16)

(6.3.17)

(6.3.18)

(6.3.10)
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Thevaluesof 18Cu(JO_)landId_Cu(jO_)/d_lfor thisexampleareshownin Figure6.5for _--0.2and

C0n=lrad/sec.From Eqn.(6.3.16)weseethatif _<< 1,thenfor theresonantfrequencycase,

15Cufjo_)l= 1 / (2 _),

IdSCufj_) / dt.ol _- 1 / (2 _2 COn),

(6.3.19)

(6.3.20)

both of which can be very large. Thus, if we know that the multiplicative uncertainty is composed

of a second-order system (with complex poles), then we can bound I_Cu(J_)l by using a lower

bound on _, and we can bound IdSCu(jCo)/dol by using a lower bound on both _ and con.

Example 3: (Time delay) Consider the hypothetical multiplicative uncertainty,

1 + SOu(s) = e-s(Td),

where T d is the time delay. Then we find that,

_Cu(s) = e'S(Td)- 1.

We compute

I_Cu(jto)l = le-Jt'°(Td ) - 11 = 2 Isin(to T d / 2)1, and

IdSCufj_) / doll = T d.

(6.3.21)

(6.3.22)

(6.3.23)

(6.3.24)

Thus, if we know that the multiplicative uncertainty is composed _ of a time delay, then we can

bound Id_CufjO_)/do_l using an upper bound on T d, the time delay.

These three examples provide insight as to how to generate the bounding functions of

assumptions AC1.3-4. In Subsection 3.3.2, it was noted that the discrete-time unstructured

uncertainty is approximately equal to the continuous-time unstructured uncertainty, if the plant

rolls-off sufficiently fast. That is, we showed

_(e jr'°T) = _SCu(JC0), for -_s/2 < co < 03s/2. (6.3.25)

This means that the low-frequency cases given by Eqns. (6.3.5) and (6.3.13) are the most

significant approximations since, typically, the poles of the unmodeled dynamics will be at high

frequencies relative to tOs/2. However, if the damping ratio of a second-order system is very small,
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then15Cu(jco)lcanbequite largeaswas seen in Eqn. (6.3.19). In this case, the full

frequency-folding summation must be used to compute the discrete-time bounding function, since

the plant, including the large resonant peak, may not have rolled-off enough to make the

approximation of Eqn. (6.3.25) accurate.

In Subsection 3.3.3, it was noted that the derivative of the discrete-time unstructured

uncertainty is approximately equal to the derivative of the continuous-time unstructured uncertainty

if the plant rolls-off sufficiently fast. That is, we showed
,p

d_(eJ coT) / do) -- dSCu(jco) / do), for -cos/2 < co < cos/2. (6.3.26)

Again, since the poles of the unmodeled dynamics will be at high frequencies relative to cos/2, the

low-frequency cases given by Eqns. (6.3.6) and (6.3.14) are the most significant approximations.

However, if the damping ratio of a second-order system is very small, then IdSCu(jco)/dcol can be

large as was seen in Eqn. (6.3.20). In this case, as for the unstructured uncertainty itself, the full

frequency-folding summation must be used to compute the discrete-time bounding function, since

the plant, including the large resonant peak, may not have rolled-off enough to make the

approximation of Eqn. (6.3.26) accurate. The use of the frequency-folding summation, see Eqn.

(3.3.25), will result in a bound that is conservative, as was discussed in Subsection 3.3.3.

Further, the use of Eqn. (3.3.25) requires considerable analytical and computational work.
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6.4Disturbance Modeling and Bounding the Disturbance DFT

In this section, we will discuss the satisfaction of disturbance assumptions of Chapter 3. In

practice, the specification of the DFT bounding function for the disturbance will probably be based

on empirical measurements of the disturbance spectrum. However, in this section, we do not

discuss the empirical generation of the bounding functions further, but instead will examine the

relationship between several disturbance models and the disturbance assumptions required by the

robust estimator. Specifically, we will discuss how different disturbance models can or cannot be

used to find a bounding function on the magnitude of the DFT of the disturbance. The relationship

between the Fourier transform of the continuous-time disturbance d(t) and the DFT of the

time-sampled disturbance d[n] was discussed in Section 3.5.1. Since this relationship was rather

complicated we will work directly with discrete-time disturbance models, in this section. That is,

we will consider the DFT of the disturbance signal directly instead of performing the integrals of

Eqns. (3.5.13-14). In order to be able to be used in the robust estimator, a disturbance model must

be able to satisfy assumptions AD2.1-2.2 of Section 4.4. As we will see, all bounded disturbances

satisfy AD2.1-2.2.

6.4.1 Bounded-but-Unknown Models

In this subsection, we examine a bounded-but-unknown disturbance model. That is, we

assume that the discrete-time signal d[n] satisfies,

Bounded-but-Unknown Model: Id[n]l < dma x, Vn. (6.4.1)

It's clear that this model satisfies assumption AD2.1; however, it's less obvious how the model

satisfies AD2.2. Consider the expression for the DFT of the disturbance, from Eqns. (2.1.5) and

(2.1.3),

N-1

DN(0_k) = _ d[m] e-J (2_/N)km.
m=0

Given only the information that dim] is bounded and real-valued, we must assume that dim] is the

disturbance that maximizes IDN(COk)l for a given bound dma x. From Eqn. (6.4.2) its clear that if

complex-valued disturbances were permitted, then the disturbance signal that maximizes IDN(C0k)I

would be dmaxeJ(2r_/N)km, which would yield DN(O_)=N. Since d[m] must be real-valued, we

(6.4.2)
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insteadconsidertheuse of a sinusoid with magnitude dma x. The author believes that the

maximizing real-valued disturbance is given by

d[m] = dma x cos(_ T m + ¢) = (dma x / 2) {eJ (_Tm+¢) + e-J(°Tm+¢)},

whose DFT is

DN(O k)

(6.4.3)

(dma x/2) { e j¢ e'J[(N-1)(°k-_)T/2] ( sin( N(0)k- _)T/2 ) / sin( (Ok- _)T/2 ) ) +

+ e-J0 e-J[(N-1)(Ok+_)W/2] ( sin( N(Ok+_)W/2 ) / sin((¢0k+_)W/2) ) }. (6.4.4)

N

In Eqn. (6.4.4) for a given _ and _, the phase shift ¢ can always be chosen such that the two

terms have the same phase and, hence, their magnitudes may be added. With reference to the

development of Section 3.5 and assumption AD2.2, we find that for the disturbance of Eqn.

(6.4.3), the following bounding function on the disturbance can be computed at the frequency _k"

iSN(0.," k) = (dmax/2)( sup {Isin(N(Ok-O)T/2)/sin((oSk-C0)T/2)l+

[0,%]

+ Isin( N(Ok+(O)T/2 ) / sin( (_k+O0T/2)1 } ) (6.4.5)

This bounding function is shown in Figure 6.6, for N=20, dmax=l and T=I see. Analogously,

the start-up bounding function in AD2.2 is given by

DN+n(o.," k) = (dma x / 2) (~ sup { Isin((n+l)(COk-(O)T/2) / sin( (Ok-O0)T/2)i +

[0,c0s]

+ Isin((n+l)(0.,'k+O)Tf2) / sin( (C0k+_)T/2)1 } ). (6.4.6)

Thus, given only that d[m] is real-valued and satisfies the bounded-but-unknown model of

Eqn. (6.4.1), we can compute the preceding bounding functions on the DFT of the disturbance

and, hence, satisfy assumption AD2.2. Since Eqns. (6.4.5-6) are complicated, the following

simpler, but more conservative, bounding functions can be used

_N(Ok) = dma x N, and (6.4.7)
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DN+n(cok) = dma x (n+l), fork = 0,.., N-1. (6.4.8)
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Figure 6.6: DFT Bounding Function for Unknown-but-bounded Disturbance.

(i,4.2 Finite-Energy Models

In this subsection, we examine both continuous and discrete time, finite-energy disturbance

models. Consider the continuous-time f'mite-energy disturbance that satisfies,

C0ntinuous-time Finite-energy Model:

oo

I d(t) 2 dt < DCfe < o_, (6.4.9)
-OO

where DCfe is a known constant. This model does not imply that the sampled disturbance is

bounded, since the samples d[n] could correspond to peaks of d(t) that have zero measure. That is,

even though d(t) is square-integrable, we cannot conclude that Id[n]l is bounded nor can we

conclude that the DFT of d[n] is bounded. However, if d(t) is finite in energy and has its energy at

low frequencies relative to the sampling frequency, then we find that

NT N-1

I d(t) 2dt= _ d[n]2T. (6.4.10)

0 n=0
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So,from Eqns.(6.4.9-10)weseethat,if d[n] hasits energyat low frequencies,thenwecan

approximatelyboundthefinite sumof d[n]2 in termsof theenergyboundon thecontinuous-time

disturbance.This leadsusto thefollowing discrete-timef'mite-energydisturbancemodel.
N-1

Discrete-time Finite-energy Model; _ d[n]2 < Dfe < 00.
n--0

m

where Dfe is a known constant. From Eqn. (6.4.11) it can be shown that

Id[n]l < _/D-'fe, Vn,

which satisfies assumption AD2.1.

N-1 N-1

(6.4.11)

(6.4.12)

Parseval's relation for ot/r definition of the DFT is given by

d[n] 2 = (1/N) _ IDN(t.t,-k)12.
n=0 k=0

Using Eqns. (6.4.11) and (6.4.13) we find

IDN(_)I < _/N Dfe, for k -- 0 .... N- 1.

So, we find that

_N(O,)k) = "4N Dfe,

and, using thls energy approach, we cannot do any better than

DN+n(o)k) = "/N Dfe, for k = 0,.., N-1.

Thus, a discrete-time f'mite-energy model can be used to satisfy assumption AD2.2.

(6.4.13)

(6.4.14)

(6.4.15)

(6.4.16)

6.4.3 Stochastic Models

In this brief subsection, we will discuss stochastic disturbance models. If the disturbance is

modeled by a stochastic process that is bounded, such as a white process that has an uniform

distribution, then the bound on the disturbance model can be used in the bounded-but-unknown

model of Subsection 6.4.1 to satisfy AD2.1-2. That is, we essentially ignore the stochastic nature

of the model and must assume that the disturbance is a sinusoid, however statistically unlikely this

may be.

If the disturbance is modeled by an unbounded stochastic process, such as a white process

that has a gaussian distribution, then assumptions AD2.1-2 cannot be fulfilled. That is, white

gaussian disturbance models cannot be used in the robust estimator.
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6.5 Design Choices for the Time-domain Parameter Estimator

In this section, we will discuss the design choices for the robustified time-domain parameter

estimator, which was developed in Chapter 4. First, we will discuss the choice of the DFT length

for use in the computation of the time-varying bound on the effects of the unstructured uncertainty.

Then, we examine the choice of the input/output filter that is used in the parameter estimator.

6.5.1 Choosing the DFT Length for the Time-domain Parameter Estimator

In this subsection, we will discuss the tradeoff that arises when we choose the DFT length

N t for the bounding mechanism in the time-domain parameter estimator. From Eqn. (4.4.23) we

fred that

where

and

_2tn] = _2sum In] + _-2rem[n],

N-1

(6.5.1)

e2surn[n] = 1 i _ Hu (ej°'_kT) IUNn(Cok) I }, for n : 0, 1,.. (6.5.2)

N k--0

-_rem =2 Uma x x_ hu[P]-

p=N

First, we will examine the sum of Eqn. (6.5.2) for two different types of input signals.

(6.5.3)

Example 1: (Single sinusoid case) Let

u[n] = sin(m T n), for n > 0,

where t.0p=_, so that for n >_ N-l,

(6.5.4)

,UNn(O k),= N, if p=0 or p=(N/2) and k=p,

N / 2, if pc-0 and p¢(Nf2) and k=p or k=N-p,

0, otherwise.

(6.5.5)

where we have assumed that N is even. In this case, Eqn. (6.5.2) becomes
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e2sum[n]= Hu(eJC°pT), for n > N-l,

which does not depend on the DFT length N.

(6.5.6)

Example 2: (Wideband case) Let u[n] be a wideband signal that has constant average energy U e.

That is, we assume

N-1 N-1

U e = (l/N) _ u[nl 2 = (1/N 2) _ IUN(0)k)I 2,
n=0 k=0

where we have used Parseval's theorem. Further, we assume that

(6.5.7)

IUN(COp)l = IUN(COq)l, for all p and q.

So, using Eqns. (6.5.7-8) we find

IUN(a._k)l = _/NU e, fork=0,..,N-1.

(6.5.8)

(6.5.9)

In this case, Eqn. (6.5.2) becomes

N-1

e2sum[n] = [ 1 _ Hu(eJc°k T) ] _r N Ue.
N k---0

The first term of Eqn. (6.5.10), which is in brackets, is essentially an average which will remain

approximately constant for different choices of N. However, the second term of Eqn. (6.5.10) is

proportional to the square root of N. In summary, for this input signal, the time-varying bound of

Eqn. (6.5.10) grows with the square root of the Db'T length N.

(6.5.10)

From examples 1 and 2 we see that the conservativeness of the bound of Eqn. (6.5.2)

depends strongly on the characteristics of the input signal. Example 2 reveals that there is a penalty

for choosing N large. We summarize the resulting tradeoff that dictates the choice of the Db-T

length in Eqns. (6.5.1-3).

TRADEOFF: 1) Choose N small since the time-domain bound can increase with q"N'.

2) Choose N large to make the remainder term e2rem[n ] of Eqn. (6.5.3) small

relative to e2sum[n ].

The choice of the DFT length for the time-domain parameter estimator will be a balancing of these
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two opposingobjectives.

6.5.2 Choosing the InputlOuput Filter

In this subsection, we examine the question of how to choose the filter F(z) of Eqn. (4.2.10)

that is used to prefilter the input and output signals before they are used in the parameter estimator

part of the robust estimator. In Section 4.2, it was discussed how prefiltering the input and output

signals by F(z) prevents a "near differentiation" problem in the parameter estimator. In this section,

we will present guidelines for the choice of the filter F(z). For convenience, we repeat the

equations for the DARMA model of the discrete-time plant where filtered signals are used. That is,

with reference to Eqns. (4.2.10-18),

yf[n] = _f[n-1]T00 + el[n],

where

(6.5.11)

el[n] = [B(q) F(q) 8u(q)] u[n] + [A(q) F(q)] d[n]. (6.5.12)

From Eqn. (6.5.12) we see that the filter F(z)'can be used to shape the frequency content of the

error signal el[n ]. Since the unstructured uncertainty 8u(Z ) is typically large at high frequencies,

F(z) will be chosen to be a low-pass filter. In addition, the filter F(z) should roll-off in the same

frequency range as the transfer function 1/A(z). If this is not the case, then the transfer function

[A(z) F(z)] will magnify the high-frequency components of the disturbance din] relative to the

low-frequency components in the error signal el[n], as can be seen in Eqn. (6.5.12). The

bandwidth of F(z), which we will think of as the 3 dB frequency, should not be chosen to be too

low since it will attenuate signal energy in the frequency range in which the estimator is trying to

identify the plant. These insights lead to a tradeoff in the choice of the filter bandwidth.

TRADEOFF: 1) Choose the filter bandwidth small so as to attenuate the effects of

a) the high-frequency unmodeled dynamics 8u(Z), and

b) the possibly high-frequency disturbance din].

2) Choose the filter bandwidth large so as not to attenuate the input signal energy in

the frequency range in which we are trying to identify the plant.

We can now develop a rule of thumb concerning the choice of the filter bandwidth.

Assuming that we are only interested in identifying the plant in the frequency range up to the
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bandwidthof 1/A(z), we find

RULE OF THUMB: Choose Bandwidth ofF(z) -_ Bandwidth of 1/A(z,0) where 0 e O, (6.5.13)

where we note that the bandwidth of the transfer function 1/A(z,0) depends on the, only coarsely

known, parameter vector 0. This rule of thumb yields a transfer function A(z)F(z) in Eqn.

(6.5.12) that is approximately constant for all frequencies. Of course, this is only a rule of thumb

and, if we wanted to identify the plant at frequencies that are higher than the bandwidth of

1/A(z,0), we would use a filter with a higher bandwidth.

6.6 Design Choices for the Frequency-domain Estimator

In this section, we will discuss the design choices for the frequency-domain bounding

methodology, which was developed in Chapter 5. First, we will discuss the choice of the memory

length M that is used in the on-line computation of the frequency-domain error bounds. Then, we

examine the various tradeoffs involved in the choice of the DFT length for the frequency-domain

estimator.

6.6.1 Choice of the Memory Length for the Frequency-dornain Boundin g Method

In Section 6.2, we showed that a magnitude bounding function on the modeling error of the

frequency-domain estimate could be found using Eqns. (5.2.4-5), which we repeat here for

convenience.

=
M-I

Igtruetp]l IUNn'P(cok) - UNn(O)k)l + 2 Uma x _ p Igtrue[P][ ,

p--1 p=M

fork= 0 .... N-1. (6.6.1)

In this subsection, we consider the choice of the integer M, which we will refer to as the memory

length of the trueplant. The motivation for using Eqn. (6.6.1) is that the bound corresponding to

M=I in Eqn. (6.6.1) is too conservative. That is, if we use M=I, then we are bounding

IENn(COk)l, the error due to the use of finite-length data, by assuming that the input signal u[n]

achieves its worst-case magnitude and phase. By choosing a value of M that is greater than 1 in

Eqn. (6.6.1), we use on-line information about u[n], in the form of the DFTs of u[n], to compute a

less conservative bound. Our goal in this subsection will be to understand how to choose M so that

the second term of Eqn. (6.6.1) is small compared to the first term.
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It is advantageous to choose M such that

M T -_ 5 Xslow (6.6.2)

where Xslow is the slowest time constant of the true continuous-time plant and T is the sampling

period. This choice is illustrated in Figure 6.7, which shows the impulse response of a f'n'st-order

system along with the choice of M given by Eqn. (6.6.2).

a_
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c;-
¢/3
[--.

Z

d-

¢xl

O

I I I I

MT

I

0.0 1.0 2.0 3.0 4.0 5.0

TIME IN TIMC CONSTANT5

6.0

Figure 6.7: Impulse Response and Illustration of Memory Length.

Intuitively, we are choosing M so that, roughly speaking, it is the memory length of the

discrete-time plant. That is, for time indicies that are greater than M = (5 Xslow / T), the impulse

response is very small compared to its values for time indicies that are less than M. We will now

show that, for the choice of Eqn. (6.6.2), the infinite summation term is much smaller than the

value of the infinite summation term for M=I. That is, we consider the ratio

oo Oo

Ratio(M) = { _ p Igtrue[P]l } / { _ p Igtrue[P]l }.

p=M p=l

We assume that the magnitude bounding function on the impulse response of the tree plant is a

fin'st-order system. So,

(6.6.3)
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Igtme[n]l < b e "anT -- b pn, where p -- e -aT.

Then, using Eqn. (C. 10) from Appendix C we find that

(6.6.4)

Ratio(M) = p(M-1) ( M - M p + p ). (6.6.5)

As an example, consider the case where the sampling frequency is chosen to be 20 times the

slowest pole, which is 'a' in Eqn. (6.6.4). So, since

COs=2X/T=20a, =, T=x/(10a),

we find

p - e -aT = e "(x/10) = 0.73040.

Using Eqn. (6.6.1) we find that

MT = 5/a, or

M -- 5/(aT) = 50/x = 16.

From Eqn. (6.6.5) we compute

Ratio(16) = 0.04531 << 1.

Thus we have shown that, in the example considered, by choosing

M = integer( 5 / (a T) )

we find that Ratio(M) = 1/20. We consider other cases in the following chart where M is chosen

using Eqn. (6.6.11).

Table 6.2: Memory length Choice and the Resulting Ratio(M).

--------_s / a)

10
50

100

I M
4

40
, 80
I 400

i R_6O(M)
I 0.07253

0,0_246
I 0.04170

0,04060
0.0397_

(6.6.6)

(6.6.7)

(6.6.8)

(6.6.9)

(6.6.10)

(6.6.11)

(6.6.12)

When the slowest pole of the plant is much slower than the sampling frequency, then the

discrete-time impulse response doesn't decay for many sample points so a very large value of M is

required.

If the plant has a zero at a frequency that is lower than the slowest pole, then we may need to

choose M even larger then the value of Eqn. (6.6.11). For example, if the low-frequency zero is

much slower than the slowest pole, then the impulse response will have a large peak so the value

of, for example 'b' in Eqn. (6.6.4), will be large relative to the case of the lowest frequency pole or
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zero being a pole. In fact, F_.qn. (6.6.11) is only a starting point when trying to choose M.

Ultimately, we need to choose M large enough so that the remainder term Ere m in

Ef, Nn(0_k ) becomes small enough for the robust estimator to provide performance-increasing

information to the control-law update algorithm. Using Eqns. (5.2.4) and (5.2.17), we find that

for n>N-1,

M-1

E-f, Nn(0_) = { _ Igtrue[P]l IUNn-P(o-_k) - UNn(C°k) I + E-rein + DN(C°k) } /IUNn(C°k )1,

p=l

for k = 0 .... N-1. (6.6.13)

We see that the remainder term Ere m enters Eqn. (6.6.13) in the same way as an all-frequency

disturbance. Thus, it's not necessary to make Ere m much smaller than the minimum of the

frequency function ]_N(C0k). Said another way, we need not choose M to be much larger than the

value that makes the error due to the use of finite-length data smaller than the error due to the

disturbance. In addition, from Eqn. (6.6.13), we see that the expected size of the input spectrum

also affects our choice of M. The larger the input spectrum is, for a fixed Urea x, the smaller the

value of M needs to be to achieve the same additive error bound.

As a final note, we observe that if the input signal u[n] is periodic with period N, then

UNn-P(0_k)=UNn(o._) for all p, and the summation term in Eqn. (6.6.13) will become zero. It is

unlikely that the reference signal of the closed-loop system will result in a plant input signal that is

periodic with period N. However, as we will later discuss, a periodic probing signal, which

enhances identification, could be chosen to have period N.

6.6.2 Choice of the DFT Length for the Frequency-domain Boundin_ Method

In this subsection, we examine the issues involved in the choice of the DFT length N that is

used in the frequency-domain bounding method. Given that we have already chosen the sampling

period T, we must choose N so that:

1) The finite-length data intervals used to find the frequency-domain estimate of the plant

are long enough to observe the lowest frequency dynamics of the plant.

2) The resolution of the frequency-domain estimate is adequate.

These two goals are both fulfilled by a sufficiently large choice of N. However, we cannot let
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N_ becausewemustalsochoose N so that the computational requirements of the algorithm are

not excessive. In the following two subsections, we will examine each of the above goals

individually.

6.6.3 Finite-length Data and Identification of Very Low-frequency Plant Dynamics

In this subsection, we will examine how N should be chosen so as to be able to identify the

very low-frequency dynamics of the plant. That is, the lowest frequency pole or zero of the plant

places a restriction on the choice of N. The results of this section will provide answers as to how

to choose N so that the robust estimator doesn't yield useless results. That is, if N is chosen to be

too small, then the frequency-domain error bounding function Ef, Nn(Cok) of Section 5.2 will be

very large. In this case, the robust estimator will not be able to provide performance-improving

information to the control-law update algorithm. To avoid this situation, we will develop rules of

thumb for the choice of N.

First, we develop a lower bound for an intelligent choice of N by considering the lowest

frequency dynamics of the plant Although we may not know the very low-frequency dynamics of

the true plant exactly, assumptions AC1.1-2 will, in general, allow us to find bounds on the lowest

frequency pole or zero. We denote the magnitude of the real part of the lowest frequency pole or

zero of the plant by O_slow. Now, consider the case where the plant is excited by an input signal at

the frequency c0---O_slow. We want to observe at least one cycle of the plant input and output

signals at this frequency so that we can identify the plant. Define the slowest cycle time by

Tslow = 2 g / aslow. (6.6.14)

Then, by choosing N such that

N T > Tslow - (6.6.15)

where T is the sampling period, we will observe at least one cycle of the plant input and output

signals at the slow frequency CXslow. Combining Eqns. (6.6.14-15), we find that

N > COs/O_slow. (6.6.16)

In practice, it will be advantageous to choose N to be larger than the lower bound of Eqn. (6.6.16);

however, this equation gives us a rule of thumb with which to work. To illustrate typical values
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for N consider the situation where COs=10 ¢Ztcl, COtcl=100 aslow. Then, the rule of thumb of Eqn.

(6.6.16) suggests that N > 1000. Clearly, for high-bandwidth control systems that have plants

with a large spread in pole locations, very large values of N can be required.

We now examine how the choice of N affects the frequency-domain error bounding

function. For convenience we rewrite Eqn. (5.2.17), the frequency-domain error bounding

function.

Ef, Nn(COk) = (ENn(C0k) + 13N(C0k) ) /IUNn(O)k)l, when n > N-l, (6.6.17)

fork=0,.. ,N-1.

Further, using Corollary 2.1, we define the following conservative bounding function on

IENn(C0k)l. That is,

IENn(COk)l < Ewc, fork-0,.., N-l, (6.6.18)

where

Oo

E'wc "- 2 Urea x _ i Igtrue[i]l, (6.6.19)

i=l

and the subscript "we" denotes the fact that this is a conservative "worst-case" bound. The

constant bound of Eqn. (6.6.19) doesn't depend on the time index n or the frequency o k. Eqn.

(6.6.19) corresponds to the remainder term Ere m, for M=I, that was defined in Eqn. (5.2.5).

Although the bounding function of Eqn. (5.2.4) is less conservative for values of M that are greater

than 1, we will first seek insight using the simpler constant bound Ewe. We rewrite Eqn. (6.6.18)

using our worst-case bound.

Ewcf, Nn(C°k ) = ( Ewc + ISN(ok) ) / IUNn(C°k)l' when n > N-l, (6.6.20)

fork =0 .... N-1.

where the subscript "wcff' denotes the "worst-case frequency-domain" error bounding function.

To analyze Eqn. (6.6.20), we first note that the magnitude of the N-point DFT of a signal, as

defined by Eqn. (2.1.5), will become larger as N increases. In fact, if the signal is a sinusoid, then

the magnitude of the DFT is proportional to N at a given o k. So as N--->oo, both

_N(ok) "-> oo, and (6.6.21)
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IUNn(Ok)l_ **. (6.6.22)

SinceEwc is a bounded constant that doesn't depend on N, we see from Eqns. (6.6.20-22) that as

N.-)oo,

E_vcf, Nn(r.0k ) ---> _N(Ok) /IUNn(r.Ok)l, whenn _>N-l, (6.6.23)

fork=0,.. ,N-1.

Thus, for sufficiently large N, the frequency-domain error bounding function approaches the

frequency-domain disturbance-to-input signal ratio. The constant Ewc bounds the error due to

using finite-length data to compute the frequency-domain estimate. Assume for a moment that the

true plant has a finite-length impulse response of length M. Then, as is shown in Figure 6.8, the

input signal values, from before the DFT frame, contribute to the values of the output signal in the

beginning of the DFT frame and the input signal values, before the end of the DFT frame,

contribute to the output signal values for times past the end of the DFT frame. Thus, to obtain an

accurate frequency-domain estimate from the f'mite-length data intervals of N points, we must

choose N >> M in order to make these "end effects" small.

M..-..-I_

u[nl

N

y[n]

M----_

N

Figure 6.8: Illustration of End-effects in Frequency-domain Estimation.
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In Subsection6.6.1,wedevelopedtherule of thumbof Eqn.(6.6.2)by assumingthatthe

slowestpoleor zeroof theplantwasapole. Thisruleof thumbfor choosingM canbewrittenas

M _- 5 Xslow / T = 2 g 'rslow / T. (6.6.24)

Thus, comparing Eqns. (6.6.24) and (6.6.16) we see that N must be chosen to be greater than M

and, in fact, to yield useful frequency-domain error bounds, N must be chosen as follows.

RULE OF THUMB 1: Choose N > cos / 0_slow (6.6.25)

where aslow = 1 / 'rslow (6.6.26)

That is, aslow is the magnitude of the real part of the slowest pole or zero of the plant. Thus, we

have provided two different intuitive arguments for choosing an N that satisfies the above rule of

thumb." To gain further insight into the choice of M and N, we present a simple example.

Example: Assume for this example that the tree plant is known as follows.

gtrue[n] = b e -anT = b pn, for n > 0, where p = e -aT, (6.6.27)

where a,b > 0. So,

Gtme(Z) = b z / (z - p). (6.6.28)

Further, assume that u[n]=l, for all n, so that Umax=l. Using Eqns. (6.6.19) and (C.11) from

Appendix C, we find that

OO

E--wc = 2 _ i b pi = 2 b p / (1- p)2, (6.6.29)
i=l

which corresponds to a choice of M=I. We will compute, at co0--0, the frequency-domain error

bounding function given by Eqn. (6.6.20) assuming that the disturbance is zero. That is, using

Eqn. (6.6.29) and the periodicity of u[n],

E-wcf, Nn(0) = ( 2 b p / (1- p)2 ) /IUNn(0)I.

It can be shown that

IUNn(0)I = N, Vn, and

Gtrue(eJco0 T) = Gtrue(1) = b / (1- p).

(6.6.30)

(6.6.31)

(6.6.32)
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So,Eqn. (6.6.30)canberewrittenas

Ewcf,Nn(0) = ( 2 p / [ N (1 - p) ] ) Gtrue(1 ).

Thus, by choosing N sufficiently large, we can make the relative error arbitrarily small.

choose N to be its bare minimum value of C0s/a, we find that

N = 2 rc / (a T) = 2 n / -ln(p).

Assuming that p -- 1, we can use the approximation -In(p) -- (l-p) to show that

N-- 2n/(1-p).

Using Eqn. (6.6.35) in (6.6.33) and the fact that p = 1, yields

Ewcf, Nn(0) _- (1 /n) Gtrue(1) _- 0.3 Gtrue(1).

This additive error bound is relatively large, being on the order of 30% of Gtrue(1).

(6.6.33)

If we

(6.6.34)

(6.6.35)

(6.6.36)

Since the additive error in the above example was so large, we consider the effects of using

different values of N and M. First, we consider the simple case of increasing N. If we choose

N - 10 cos / a >> cos / a, (6.6.37)

then

Ewcf, Nn(0) -_ ( 1 / (10 n) ) Gtrue(1) = 0.03 Gtrue(1), (6.6.38)

which is a much smaller additive error bound than Eqn. (6.6.36).

Now, we consider the effect of increasing M. For the example of Eqns. (6.6.27-28), we

choose to use a value of M that is greater than 1. In this case, using again Eqns. (6.6.19) and

(C. 11) and the periodicity of u[n], we f'md

oo

Ef, Nn(O_k) = 2 _ i b pi = 2 b pM (M- M p + p) / (1- p)2, Vn, Vc0k. (6.6.39)
i=M

Following a development similar to that of Eqns. (6.6.30-36), we find that, if we choose N=C0s/a

and p=-l, then

_f, Nn(0) = ( (pM (M- M p + p) / n) Gtrue(1).

So, by choosing M sufficiently large we can make the additive error arbitrarily small in this

example. We note that the choice of M that is dictated by the rule M=O_s/a , will guarantee that

(6.6.40)
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pM (M - M p + p) is small. For example, if aT---_/10, then M--_s/a=20 and

pM (M - M p + p) = e "2re ( 20 - 19 e "_/10 ) - 0.011. (6.6.41)

So, using Eqn. (6.6.40),

Ef, Nn(0) -- (0.011 / _) Gtrue(1) = 0.004 Gtrue(1). (6.6.42)

In summary, we have shown how the choice of N and M affects the additive error at o_0=0 for a

simple example. We have seen how an increase in either N or M will decrease the

frequency-domain additive error.

_i,6,4 Frequency-domain Resolution

In this subsection, we will develop a rule of thumb for choosing the DFT length N based on

the required frequency-domain resolution of the robust estimator. That is, once the sampling

frequency cos has been chosen, the value of N specifies how many equally spaced frequency points

on the interval [0,O_s] are used in the frequency-domain bounding methodology of Chapter 5. The

choice of N depends on how smooth, in the frequency domain, the plant dynamics are. We can

use the results of Subsection 5.7.3 to develop a rule of thumb for the choice of N based on

resolution requirements. Using Eqn. (5.7.29), we can bound the largest inter-sample variation of

!Ssu(C jc°T, 0)1 from 18su(eJ°)k T, §)1,

118su(eJC°T, §)1 18su(eJ°_T, §)11 < (cos / N) n- _ Vsu,i (°)k,°_k+l),

for o_ [o_,o_+ 1] (6.6.43)

n
where Vsu,i (O_k,O_k+ 1) is defined by Eqn. (5.7.31) which we rewrite here,

Vsu,in(o_,O)k+l ) = sup { Vsun(e jc°T) }.

Thus, if we want to bound the maximum inter-sample variation, we must bound

(cos / N) Vsun(eJC°T), Vc0,

(6.6.44)

(6.6.45)
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whereVsun(eJcoT) dependson theon-linecomputedvalueof Asun(ejcoT)aswasdevelopedin

Subsection5.7.2. Now, in thefollowing rule,wewantaprecompu.tableboundon thederivative,

sowechooseto usetheworst-caseboundingfunctionVsu,wc(eJcoT ) that is based only on a priori

information as shown in Subsection 5.7.1.

RULE OF THUMB 2: Choose N large enough so that (cos / N) Vsu,wc(eJcoT ) is

sufficiently small for all co. (6.6.46)

The meaning of "sufficiently small" depends on how large an inter-sample variation is acceptable.

6.6.5 Conclusions on the Choice of the DFT Length for the Frequency-domain E_timat0r

We now summarize our results concerning the choice of N. The rules of thumb 1 and 2,

corresponding to Eqns. (6.6.25) and (6.6.46), respectively, provide lower bounds on the choice of

N. Rule of thumb 1 is chosen so that we can accurately identify very low-frequency dynamics and

rule of thumb 2 is chosen so that the inter-sample variation of our continuous bounding function on

the unstructured uncertainty, is acceptably small. The disadvantage of choosing N or, for that

matter, M to be very large is that the number of computations can become prohibitively large. The

severity of this computational limit depends on the state of the art in high-speed computing.

Computational issues axe discussed further in the following section.

6.7 Computational Issues

In this section, we will discuss the computational requirements of the robust estimator.

Specifically, we will focus on the main computational bottle-necks in the on-line implementation of

the robust estimator. The robust estimator requires considerable design time as well as extensive

off-line and on-line calculations. It is the goal of this section to provide an idea of the size of the

on-line calculations that are required by the robust estimator.

The main computational burden of the robust estimator is due to the extensive calculations of

the frequency-domain bounding method. The chief computational culprit is Eqn. (5.2.4), which

we repeat here for convenience,
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M-1

ENn(cok) = Igmue[P] I IUNn-P(c°k) - uNn(c°k) I + F-Tem, for k = 0 .... N-1.

p=l

where the remainder term Er_ m can be computed off-line using Eqn. (5.2.5). In the

frequency-domain bounding method of Chapter 5, the bounding function of Eqn. (6.7.1) must be

computed at every sample time. For a given frequency cok, we compute Eqn. (6.7.1) using our a

priori bounding function on Igtrue[n]l and our on-line computed values of the input signal DFT,

(6.7.1)

UNm(C0k), for m = n-(M-1), n-(M-1)+l .... n. Due to the DFT symmetry properties of

real-valued signals, we only need to compute Eqn. (6.7.1) for k = 0,.., N/2. In summary, at

every sample time, we must compute a sum of M-1 terms at (N/2)+l frequencies. So, in Eqn.

(6.7.1) we must perform approximately M.(N/2) subtractions, multiplications and additions, at

every sample time. Thus, we see that

Number of On-line Computations per Sample Time = M • (N / 2) *- M • N. (6.7.2)

This equation reveals how extensive the computational requirements of the robust estimator can

become for large values of M and N. However, an important feature of Eqn. (6.7.1) is that it can

be computed simultaneously, that is, in parallel, at the (N/2)+l frequency points. This will allow

vast increases in the computation speed of Eqn. (6.7.1). For a parallel implementation of Eqn.

(6.7.1), the computation time will only increase in proportion to the memory length M. In

Chapters 8 and 9, we will consider two simulation examples. We include the following table to

give an idea of how many calculations are required in these examples for Eqn. (6.7.1).

Table 6.3: Number of On-line Computations for Eqn. (6.7.1).

Number of Multiplications, Subtractions
Expmpl¢ I M I N I _nd Addition_ per Sample Time

Chapter 8. Eqn. (8.1.2) I 10 I _50 I 2.50
Chapter 9. Eqn. (9.2.4) I 200 I 1000 I 100,000

This table illustrates just how different the computational requirements of the frequency-domain

bounding method can be for different examples. The example of Chapter 8 has fast discrete-time

poles that require only a small value of the memory length M. In addition, the Chapter 8 example

has no sharp frequency-domain peaks, so frequency-domain resolution isn't a problem and a small

value of N can be used. This simple first-order example is one of the least computationaUy

demanding examples that we could have presented. On the other hand, the example of

Chapter 9 is one of the most computationally demanding examples that we could have presented.
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TheChapter9 examplepotentiallyhasveryslowdiscrete-timepolessothememorylengthM must

bechosento belarge. In addition,thesecond-orderexampleof Chapter9 hasapotentiallysharp
frequency-domainpeakthatrequiresalargechoiceof N for frequency-domainresolution:These

examplesserveasbenchmarksfor thecomputationalrequirementsof thefrequency-domain
boundingmethod.

As amodificationto thebasicmethodologyof Chapter5, theboundingfunctionof Eqn.
(6.7.1)couldbecomputedlessfrequentlythaneverysampletime. This wouldresultin areduction

of real-timecomputingrequirementsatthecostof amoreconservativeboundingfunction. Thatis,

if we only computedthefrequency-domainboundingfunctionof Eqn.(6.7.1),sayeveryfive

sampletimes,thenwewould learnlessthanif wecomputedit everysampletime.

Thecomputationof Eqn.(6.7.1)represents,byfar, themajority of thecomputationalburden

of the robust estimator. The on-line calculations that are required by the time-domain parameter

estimator of Chapter 4 are quite small compared to the on-line calculations of Eqn. (6.7.1). The

one other part of the robust estimator that requires significant computations is the frequency-domain

parameter estimator of Section 5.4. This estimator requires the computation of a weighted

least-squares fit at (N/2)+l frequency points. This computation does not represent a bottle-neck for

the real-time implementation of the robust estimator since this least-squares fit is computed only

infrequently, at the times that the control-law is updated. Thus, even if the computation requires

several sample times to perform, it will not greatly affect the performance of the adaptive control

system.

In summary, we have seen that the frequency-domain bounding computation of Eqn.

(6.7.1), which is the same as Eqn. (5.2.4), is the primary limitation for the real-time

implementation of the robust estimator. The examples of this section have provided an idea of just

how large the computational requirements of the robust estimator are. In the author's opinion, the

robust estimator requires a prohibitively large amount of computation by today's standards. The

simulations of Chapters 8 and 9 had to be performed on a Cyber 205 supercomputer. It is hoped

that future advances in computer technology will remove this computational barrier to using the

robust estimator. What may seem computationally impractical today often becomes practical with

such computing advances.

6.8 Conclusion

In this chapter, we have discussed design issues and the specification of the assumed bounds

for the robust estimator. In Section 6.5, we examined the tradeoffs involved in the choice of the

DFT length N t that is used in the robustified time-domain parameter estimator. Further, in Section
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6.6,wediscussedthe lower bounds on the choice of the DFT length Nf that is used in the

frequency-domain bounding method. We will later see in the simulation chapters that N t will, in

general, be chosen to be smaller than the frequencyrdomain DFT length Nf. In the robustified

time-domain parameter estimator, the bounding mechanism, which uses Nt-POint DFTs, needs to

track the error signal that it is bounding. This objective results in a relatively small choice of N t.

However, in the frequency-domain bounding methodology we find that there are many reasons to

choose the DFT length Nf large. So, if we choose to use the time-domain parameter estimator in

combination with the frequency-domain bounding method, then we are forced to compute two

different DFTs on-line, one that has N t points and one that has Nf points.
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CHAPTER 7.

A SIMPLE ROBUST ADAPTIVE CONTROLLER

7.1 Introduction

The purpose of this chapter is to tie together the results of the previous chapters. So far, we

have presented two methods for generating parameter estimates and, hence, a nominal model, and

one method for finding a frequency-domain uncertainty bounding function. Further, we have

investigated some of the design choices associated with these parameter estimators and the

bounding method. In this chapter we will illustrate, through an example, how the robust estimator

would be used in a robust adaptive control system. In addition, we discuss the design of a strategy

for adding probing signals to the closed-loop control system to enhance identification. The chapter

is organized as follows.

In Section 7.2, we present some stability-robustness results for discrete-time systems.

These results are then used in Section 7.3 to develop a simple control-law update algorithm that

incorporates an on-line stability-robustness test. The results of Section 7.3 represent a complete

robust adaptive controller for a limited class of plants. In Section 7.4, the use of probing signals is

discussed. While there are many possible choices for a probing signal, the development of the

frequency-domain bounding method gives insight as to what kinds of probing signals will result in

improved closed-loop performance, that is, increased bandwidth. The key contributions of this

chapter are the development of a robust control-law update algorithm for a limited class of plants,

and the investigation of what probing signal strategies should be used with the robust estimator.

7.2 Stability Robustness Issues

In this section, we will develop tools that can be used to conclude that a discrete-time

closed-loop system is robustly stable. Further, we will examine the implications of discrete-time

stability robustness for the sampled-data system with the continuous-time plant. Specifically, the

possibility of hidden oscillations occurring between the time samples of a sampled-data system will

be examined.

7.2,1 Discrete-time Stability-Robustness Tests

In this subsection, we will use the results of Appendix F and the bounding function of

Chapter 5, to find conditions under which the SISO discrete-time, closed-loop system of Figure

3.3 is robustly stable. From Figure 3.3 and Eqn. (3.7.1), we find that our nominal loop gain is
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T(z) = G(z,O)K(z).

Further,we find ourperturbedloop gain,

q'(z) = Gtrue(Z) K(z) - G(z, 0) [1 + _su(Z, 0)1 K(z) - T(z) [1 + _Ssu(Z, 0)].

We assume that we have a bounding function Asu(eJcoT, §) on 15su(eJcoT, §)1 for all co. Then,

using the clef'tuitions of T(z) and "F(z) given by Eqns. (7.2.1) and (7.2.2), respectively, we can

state the following theorem.

(7.2.1)

(7.2.2)

Theorem 7.1; The closed-loop system "_(z) / (1 + "F(z)) has all its poles in the open unit disk if:

1) Assumption AD1.5 of Chapter 3 holds, that is, Gtrue(Z) and G(z,00) have all their poles

in the open unit disk, for all 00 _ O.

2) K(z) has all its poles in the open unit disk.

3) The nominal closed-loop system, T(z) / (1 + T(z)), has all its poles in the open unit disk.

4) a) I1 + T'l(eJcoT)l > Asu(C_JcoT,§), Vco, or equivalently, (7.2.3)

b) IT(eJ coT) / (1 + T(eJcoT))l < 1 / Asu(e jcoT, §), Vco. (7.2.4)

Proof: The proof is an application of the resuks of Appendix F. Conditions 1 and 2 of the above

theorem ensure that conditions la and 2 of Theorem F.3 are fulfilled. The stability of the nominal

closed-loop system, that is, condition 3 from above, implies that condition lb of Theorem F.3 is

satisfied. Theorem 7.1 follows directly from Theorem F.3 of Appendix F.

Q.E.D.

7.2.2 Implications for Continuous-time

Although the results of the previous subsection enable us to prove asymptotic stability of the

discrete-time closed-loop system, we are actually interested in the stability of the underlying

sampled-data system with the continuous-time plant. That is, the analysis of the discrete-time

system will tell us what is happening at the sampling instants. However, it will not tell us about the

continuous-time plant output between these sampling instants. A phenomenon known as "hidden

oscillations" or "intersample ripple" can occur, where the continuous-time plant output may

oscillate even though the plant output at the sampling times does not. Astrom and Wittenmark
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[31, p. 116] provide a discussion of this problem. The following is adapted from their text.

They distinguish two cases of the hidden oscillations problem.

Case 1." Open or closed-loop systems, where there is an oscillation in the continuous-time output

which cannot be seen in the control signal.

Case 2: Oscillations between the sampling points caused by an oscillation in the control signal.

The first case is due to the fact that for certain values of the sampling period, the discrete-time plant

model may have a pole-zero cancellation. If this is the case, then some of the continuous-time

open-loop plant modes will not be observable in the discrete-time plant output. A change in the

sampling period will solve this problem of unobservability. The second case of hidden oscillations

occurs when there are poorly damped plant zeros that are cancelled by the compensator. Astrom

and Wittenmark summarize by saying that there are no hidden oscillations, if the unobservable

open-loop plant modes are not oscillatory and if unstable or poorly damped plant zeros are not

cancelled by the compensator.

7.3 A Simple Control-law Update Algorithm

In this section, we will present a simple control-law update algorithm that can be used in

conjunction with the robust estimator to form a complete robust adaptive control system. The main

purpose of this section is to illustrate how the robust estimator can be used in a closed-loop

adaptive controller. The control-law update algorithm only works for a limited class of plants and

is not recommended as a general case algorithm. However, because of its simple form we will be

able to automate the update algorithm and, thus, later in Chapter 9, we will be able to perform an

illustrative simulation.

7.3.1 Control-l_w Development

A simple pole-zero cancellation control-law will be developed. Our compensator will be

formed by inverting the nominal model and substituting a discrete-time integrator. We will assume

that the nominal model is stably invertible for all admissible parameter estimates and that the relative

degree of the nominal model is one. We use only the information yielded by the robust estimator in

our formulation of the robust control-law update algorithm. We state our simple algorithm in the

form of a theorem.
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Theorem 7.2: If Gtrue(Z) - G(z, 0) [1 + 5su(Z, 0)] and (7.3.1)

1) Gtme(Z) has all its poles in the open unit disk,

2) G(z, 0) is of relative degree one or less, and has all its poles in the open unit disk for all

§_e,

3) 18su(e j°_T, 0)1 < Asu(eJ°_T, 0), Vo_, (7.3.2)

where Asu(eJ0, §) < 1. (7.3.3)

4) K(z, 0) = G'l(z, 0) c / (z - (1-el)). (7.3.4)

where c={ [-(I/x)+ */(1/x)2+4/x ]/2, ifx>0 (7.3.5)

t 1, if x<0

and x = sup { [Asu(ejc0T ' _)2.1] / [ 2 (1 - cos(_T)) ] } + e.2, (7.3.6)
o_e(0,nfr]

where e 1 and e 2 are infinitesimally small positive constants.

Then, the closed-loop system Gtrue(Z) K(z, §) / (1 + Gtme(Z) K(z, §)) has all its poles in the open

unit disk.

Remark 1: The constants e 1 and e2 are included in the above theorem only to satisfy some technical

conditions in the proof. In particular, the presence of e 1 means that K(z) has no poles on the unit

circle, thus allowing us to use Theorem 7.1.

Remark 2; In condition 2 of the above theorem, the nominal model is assumed to have a relative

degree of one or less so that the compensator will be proper.

Proof: Rewriting Eqns. (7.2.1-2) and using Eqns. (7.3.1) and (7.3.4) we find that

T(z) = G(z, 0) K(z, 0) = c / (z - 1 + el) (7.3.7)

T(z) = Gtrue(Z) K(z, 0) = T(z) [1 + 8su(Z, 0)] = ( c / (z - 1 + e l) ) [1 + 8su(Z, 0)]. (7.3.8)

Thus, with reference to 4a of Theorem 7.1, and considering the symmetry and periodicity of Asu,
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we must show that

I1 + (_jcoT. 1 + el) / cl > Asu(ejcoT , 1_), for all co e [0,g/T]. (7.3.9)

Now, to simplify the proof, we let el--->0 and derive the limiting form of the inequality of Eqn.

(7.3.9). So, we must show that our control law satisfies

I1 + (cos(c0T) + j sin(coT) - 1) / el > Asu(eJcoT , §), for all co e [0,x/T], (7.3.10)

or

[1 +(cos(c0T)-1)/c]2+ (sin(coT)/c) 2 > Asu(eJcoT,§)2 ' forallco_ [0,x/T], (7.3.11)

or

2 (1 - cos(COT)) (1 - c) / c 2 > Asu(eJcoT , §)2.1, for all co e [0,_/T].

For c0=0, we find that Eqn. (7.3.12) becomes

1 > Asu(C_O,{_)2,

regardlessof thevalue of c.

(7.3.12)

(7.3.13). Next, we consider the requirement of Eqn. (7.3.12) for co-a). Since

1 - cos(coT) > 0, for co e (0,x/T].

we can use Eqn. (7.3.12) to see that our requirement has become

(1 - c) / c2 > [Asu(CJcoT , {})2 _ 1] / [ 2 (1 - cos(coT)) ], for all co e (0,x/T],

or, using the definition of Eqn. (7.3.6), we must show that

(1 - c) / c2 > x > [Asu(eJcoT , _)2.1] / [ 2 (1 - cos(c0T)) ], for all co e (0,_fr].

Now, if

(7.3.14)

(7.3.15)

(7.3.16)

x = (1 - c) / c2,

then

(7.3.17)

xc2+c - 1 =0,

and, using the quadratic equation, we find that the two possible values of c are given by

(7.3.18)

c=[-(1/x)+ "q(llx)2+4/x ]/2. (7.3.19)

Eqn. (7.3.5) corresponds to the choice of the '+' sign in Eqn. (7.3.19). Ifx < 0, then Eqn.

(7.3.13)

The assumption of Eqn. (7.3.3) satisfies the requirement of Eqn.
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(7.3.5)wouldyield a c _> 1; however, we constraint c to be unity in this case; otherwise, the

closed-loop nominal system will have a negative real pole.

So far we have shown that, if conditions 3-4 of the theorem are satisfied, then condition 4a

of Theorem 7.1 is satisfied. We still need to prove nominal stability. The nominal closed-loop

system is given by

Tel(Z ) = G(z, §) K(z, §) / (1 + G(z, §) K(z, §)) = c / (z - 1 + c + el) (7.3.20)

whose pole is 1-c-e 1. From Eqn. (7.3.5) we conclude that 0 < e < 1. Thus, the pole of the

nominal closed-loop system is in the open unit disk since

-1 < -e 1 < 1-e-e 1 < 1-e 1 < 1. (7.3.21)

Hence, we have shown that condition 3 of Theorem 7.1 is fulfilled. Finally, we see that conditions

1, 2 and 4 of Theorem 7.2 satisfy conditions 1 and 2 of Theorem 7.1. By application of Theorem

7.1 we have proven Theorem 7.2.

Q.E.D.

Remark 3: Theorem 7.2 is not easily extended to cases where the plant has a relative degree that is

greater than Unity. For the higher relative degree cases it is not possible to decompose the

stability-robustness requirement into an inequality of the form of Eqn. (7.3.15) where one side

depends only on the compensator gain c and the other side depends only on the uncertainty

bounding function and frequency.

Remark 4: In the control-law update algorithm of Theorem 7.2, the compensator gain c can

potentially become unity if the uncertainty bounding function Asun(ejC°k T, becomes less than

unity for all o_.

the nominal closed-loop transfer function becomes

Tel(Z) = c / (z - 1 + c).

So, for c--l,

Tcl(Z) = z-1.

If the gain c becomes unity, then, ignoring the infinitesimally small constant g 1,

(7.3.22)

(7.3.23)

Thus, the algorithm of Theorem 7.2 can potentially yield a deadbeat system. To avoid this, the

update algorithm can be modified to not allow the compensator gain to exceed some target gain

c t < 1. In this case, the pole of the nominal closed-loop system will never become faster than 1-c t,

and the system will be more robust than in the deadbeat case.
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7.3.2 Stability Robustness Tests using Discrete Frequency Points

In this brief subsection, we will address the problem of applying Theorem 7.2 when we have

a discrete function of frequency, Asun(eJ°k T, 0) for k=0,.., (N/2), instead of a continuous one.

This problem was addressed in Section 5.8 where we added a safety factor to the uncertainty

bounding function to account for possible inter-sample variations between discrete frequency

points. Theorem 7.2 must be modified slightly to account for the use of the discrete uncertainty

bounding function. That is, in Theorem 7.2, Eqn. (7.3.6) can be replaced, at a given time index n,

by

x-- max { [Asun(eJ°_kT,§) 2- 1]/[2(1 - cos(c0kT) ) ] } +e2, (7.3.24)
k=l,..,(N/2)

where Asun(eJ°k T, 0) is the final uncertainty bounding function including the safety factor, which

was developed in Section 5.8, and where again e.2 > 0 can be made arbitrarily small.

7.4 Probing Signals and Closed-loop Operation

7.4.1 Introduction

In this section, we will discuss the addition of probing signals to enhance identification of the

plant in a closed-loop adaptive system. Up to this point in the thesis we have taken a passive

attitude with respect to the role of the robust estimator. The robust estimator updates its estimated

frequency-domain model when the input signal is rich in some frequency range. However, when

the plant input signal is not rich enough to improve on the estimated model, then the robust

estimator doesn't update its estimates and, consequently, the control-law is not updated. If we

want to enhance identification, that is, enable our robust estimator to learn, we can add a probing

signal in the closed-loop. This probing signal will degrade the command-following performance of

our closed-loop control system; however, the increased knowledge of the plant will result in better

command-following in a later period, provided that the plant remains time-invariant. This trade-off

between identification goals and closed-loop performance goals has been studied in the stochastic

adaptive control literature as the "dual-control" problem [35], [6]. We do not pursue this stochastic

approach but will instead discuss different characteristics of the probing signal that will enable the

robust estimator to provide performance-improving information to the control-law update
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algorithm. Thegoalof this section is to show how the robust adaptive control framework of

Chapter 3 and the characteristics of the robust estimator impact the choice of a probing signal.

Consider the block diagram of Figure 7.1, which is the same as Figure 3.3 except that we

have added the probing signal v[n] at the plant input There are many possible strategies for

choosing a probing signal to enhance identification. The following information can influence our

choice of a probing signal:

1) the frequency range of the largest plant uncertainty,

2) the desired bandwidth of the closed-loop system,

• 3) knowledge of the spectrum of the additive output disturbance din],

4) knowledge of the spectrum of the reference signal r[n],

5) the desired speed of the identification procedure.

In addition to the above list, we can also use information that is gathered on-line to help determine

our choice of probing signal. Since we compute the DFT of the input signal u[n] on-line, we could

keep track of the spectrum of u[n] to see if we needed a probing signal. In the following

subsections, we will use assumptions AD1-3 of Section 3.5 (i.e. 1 and 3 above) and an assumed

target closed-loop bandwidth, in our development of a strategy for generating a probing signal. We

do not assume that we know the spectrum of the reference signal ahead of time.

The rest of the section is organized as follows. In Subsection 7.4.2, we discuss questions of

when to introduce probing signals and when to removed them. In Subsection 7.4.3, we will

present a specific probing signal strategy that can be used with the simple adaptive control-law

update algorithm of Section 7.3. This strategy will later be used in the simulations of the thesis.

Since there are potentially many different probing signal strategies, we devote Subsection 7.4.4 to a

general discussion of the characteristics of several different strategies.
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Figure 7.1: Closed-loop Discrete-time System with Probing Signal.

7.4.2 Starting and Stopping Criteria for Probing Signal Strategies

In this subsection, we examine criteria for adding or removing probing signals. In Figure

7.1, if the plant input signal u[n], which at this point is due primarily to the reference signal r[n], is

rich enough, then the adaptive control system will yield successively higher bandwidth systems.

Unfortunately, this will rarely be the case, so another source of excitation must be introduced. That

is, if the adaptive control system doesn't push the bandwidth out on its own, based on the signals

due to r[n], the designer may mandate that a probing signal be introduced. It's not clear that one

wants to introduce a probing signal in all cases, since the probing signal will disturb the system.

However, if the designer determines that he wants some closed-loop bandwidth to be attained in

some finite amount of time, then such a signal may be required. Several questions arise in this

situation. For example, what criteria should be used to detect when the adaptive control system is

not pushing the bandwidth out, and what criteria should be used to stop the addition of the probing

signal? We will now address these questions.

Probing Signal Starting Condition

To detect the need for a probing signal, the time progress of the adaptive control system

needs to be monitored. We could check the richness of the plant control signal that is due
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primarily,atthispoint, to thereferencesignal. However, in some situations, it makes more sense

to check the progress of the adaptive control system as measured by its ability to increase the

closed-loop bandwidth. If we could some how quantify the closed-loop bandwidth in terms of

information that is available on-line, then we could perform this check. So, intuitively, we could

check the average time rate of change of the closed-loop bandwidth and decide to "turn-on" the

probing signal if this rate were not fast enough.

Probing Signal Stopping Condition

An obvious choice for the stopping condition for the probing signal is the attainment of the

target closed-loop bandwidth. Of course, this again assumes that we could somehow quantify the

closed-loop bandwidth in terms of information that is available on-line.

As an extension to the results of this thesis, in Subsection 10.2.4, we discuss the

modification of the robust estimator to handle slowly time-varying plants. In a situation where the

plant is slowly time-varying, the uncertainty bounding function can actually become larger if no

rich signals are present in the system for a period of time. Thus, the attainment of the target

closed-loop bandwidth, at one point in time, isn't the end of the story; rather, the current bandwidth

must continually be monitored to see if it falls below its target value. That is, for the slowly

time-varying case, we keep checking if the target closed-loop bandwidth is achieved and if it isn't,

we introduce the required probing signal. As a final note to this subsection, we point out that there

are some problems where the nominal closed-loop bandwidth, or some approximation thereof, is

available in the form of the compensator parameters and the estimated plant parameters. For

example, in the simple control-law of Section 7.3, the single discrete-time pole of the nominal

closed-loop system can be expressed in terms of the known compensator gain c.

7.4,3 A Specific Strate_/

In this subsection, we present a strategy for adding a probing signal to enhance identification

and hence operation of the robust estimator. We again assume that the probing signal v[n] is added

at the plant input as shown in Figure 7.1. Further, we assume that the control-law update

algorithm of Section 7.3 is being used and that some target discrete-time pole Ptcl has been chosen

for the nominal closed-loop system. First, we find out how large that the DFT of the input signal

must be to reduce our uncertainty enough to achieve the target closed-loop bandwidth. Then, we

use this input signal DFT to compute the DFT magnitude of the probing signal. Our procedure will

be to make several assumptions so that we can come up with some idea of what the spectrum of the

probing signal should be. Of course, the validity of our results will depend on the validity of our
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assumptions,someof whichwill not bevalid in all cases.

periodicwith periodN, sothat

UNn-P(o_k)= UNn(o_k) , 'Co) k,

and using Eqn. (5.2.4) we find that

E--Nn%)= em, V%

Now, from Eqn. (5.2.17) and (7.4.2) we know that for n > N-l,

Ef, Nn(o) k) = ( Ere m + 15N(O) k) ) /IUNn(O)k)l, VoW.

We also assume that

Gcumf, Nn(O_k ) - G(eJ°_kT, §), and

E'cumf, Nn(Cok ) = Ef, Nn(c.ok), '¢(o k.

First, we assume that the input signal is

(7.4.1)

(7.4.2)

(7.4.3)

(7.4.4)

(7.4.5)

So, using Eqns. (5.5.6) and (7.4.4-5) we find that

Asun(eJe°k T, 0) = Ef, Nn(O._k ) /IG(eJ°3kT, I})1 (7.4.6)

which, combined with Eqn. (7.4.3), yields

Asu n(ej°_T, §) =( Erem + _N(O)k) ) / (IUNn(a._k)l IG(eJ°)kT, §) I ), Vfz_k. (7.4.7)

Rearranging yields

IUNn((°k)l = ( Erem + _N((°k) ) / ( Asun( ej°_kT, I}) IG(eJ(°k T, 0)1 ), _'(o k. (7.4.8)

From Section 7.3, we know that we want

Asun(eJ(OkT,0) < I(eJO)k T- 1)/Ctc 1 + 11, Vo_k, (7.4.9)

where Ctc 1 is the compensator gain corresponding to the target closed-loop bandwidth. That is,

using the compensator of Theorem 7.2 yields a nominal closed-loop system with a single

discrete-time pole at 1-c. Thus, if the target discrete-time pole is Ptcl for the nominal closed-loop

system, then

Ctc 1 = 1 - Ptcl" (7.4.10)

Combining Eqns. (7.4.8-9) yields the requirement that

IUNn(r.o k)l > ( E--rem + _N(_k ) ) / ( I(ejc°kT- 1) / Ctc 1 + 11 IG(eJe°kT, _)1 ), Vc0 k. (7.4.11)

This equation gives us an idea of what the desired spectrum of the input signal should be so as to
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achievetheclosed-loopdiscrete-timepolePtcl" However,whatwe arereally interestedin is the

desiredspectrumof theprobingsignal.

Thetransferfunctionfrom v[n] to u[n] is givenby thesensitivitytransferfunction,

U(z)/V(z) = 1 / ( 1 + Gtrue(Z) K(z,§) ). (7.4.12)

Thus, if we desire the plant input signal to have some spectrum, we must consider the disturbance

rejection properties of the loop when we choose the probing signal v[n]. From Eqn. (7.4.12) we

conclude that, to yield an input signal with a DTFT of U(eJe°T), we must use a probing signal v[n]

with a DTFT of V(eJ _T) where

V(e j_T) = [1 + Gtrue(e it°T) K(eJ_T, §)] u(eJc°T), _'co. (7.4.13)

From the results of Chapter 2, we know that for sufficiently large N

VNn(Ork) = [1 + Gtrue(eJ°"k T) K(eJt'°k T, 0)] UNn(o_k), Vt.o k. (7.4.14)

Combining Eqns. (7.4.11) and (7.4.14) we find that, to achieve our target closed-loop bandwidth,

we want to choose the probing signal such that

IVNn(¢_)I = I1 + Gtrue(_°_k T) K(eJt'°k T, 0)1-

(_rem + _N(C°k) )/( I(ej°'_kT - 1) / Ctcl + 111G(eJC°kT, §)1 ), V_k • (7.4.15)

Since we do not know Gtrue(Z), we use Eqn. (7.3.8) to find

Gtrue(_tX_kT) K(eJ°_T,§) = [c/(eJC°k T- 1)][1 + _su(eJ°_kT,0)], VO._k, (7.4.16)

where we have set el=0 here. Using the triangle inequality, we write

I1 + Gtrue(eJ°'_k T) K(_°_k T, 0)1 < 1 + [c /leJt°k T- 11] [1 + _su(eJ°_k T, §)], VoW.

(7.4.17)

where we have again used the fact that Asu is a bounding function on I_sul. Now, in addition to

not knowing Gtrue(Z), we do not know the true parameter vector 0 0. That is, while we do know

the current parameter vector estimate 0, we really want to use the probing signal that will excite the

plant well enough to identify the true plant with parameter vector 0 0. To make sure that the probing

signal has a large enough spectrum at all frequencies, we choose to use the smallest possible

nominal model at all frequencies in Eqn. (7.4.15). Now, we can rewrite Eqn. (7.4.15) using this
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smallestnominalmodelandEqn. (7.4.17).

IVNn(tx_k)l -- ( 1 + [c/leJ°'_k T- 11][1 +_su(eJ°'_T,0)] )-

(Erem + _N(C°k) )/( I(ejtx_kT - 1)/Ctcl + 11 inf {IG(eJta}kT,0)l} ), Vo} k. (7.4.18)

0_O

In the above equation, the infmaum can be computed off-line. Eqn. (7.4.18) is only computed

infrequently, for example, the probing signal might only be updated every N sample times. At

these probing signal update times, we use the current compensator gain c, which is updated by the

control-law update algorithm, and the current uncertainty bounding function A--su, which is updated

by the robust estimator, in order to compute the effect of the current disturbance rejection properties

of the closed-loop. In summary, we have computed an approximate expression for the DFT of the

probing signal that will yield enough information for the robust estimator to allow the robust

control-law update algorithm of Theorem 7.2 to yield a nominal closed-loop system with a

discrete-time pole at Ptcl"

As a Final problem, we must find a time-domain signal that has the DFT magnitude of Eqn.

(7.4.18). Here we will work with VN(tOk), the unshifted version of the DFT of v[n]. The inverse

DFT of VN(O_k) is given by

N-1

v[n] = 1 _ VN(a,_k) WN-kn
N k--O

for n=0, .... N-1. (7.4.19)

One way to compute a time-domain signal with DFr magnitude IVN(ta}k)l is the following

N/2

vl[n] = 1 _ IVN(_,'k)lsin(2_kn/N), for n=0 .... ,N-1.
N k--0

(7.4.20)

In Eqn. (7.4.20), we only use sinusoids with frequencies up to O_k=CO(N/2)=(O3s/2), since

symmetry properties give us information for the frequencies from _[(N/2)+l] to O_(N_I ). When

there are many terms IVN(tak)I that make significant contributions in the sum of Eqn. (7.4.20), we

find that the time-domain signal vl[n] tends to have peaks, at some time indices, that are much

larger than the standard deviation of the signal from its zero average. This occurs at the time
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indiceswheremanyof thesinusoidsadd-up.Theselargetime-domainpeaksareundesirablesowe
seekanothermethodfor finding atime-domainversionof theprobingsignal. In thesecond

method,whichwedescribebelow,we form atime-domainsignalby assigningarandomphaseto

theDP-TmagnitudeIVN(O_k)Ifor eachk, andthencomputingtheinverseDFT. So,for method2

we find theprobingsignalv2[n] asfollows,

N/2

where

v2[n] = i _ IVN(O.,'k)I[ ak cos(2 _ k n / N ) + b k sin( 2 g k n / N ) ], (7.4.21)
N k--0

SO

for n=0 .... ,N-1

ak - cos(tPk ) (7.4.22)

b k = sin(gk) (7.4.23)

'/ak 2 + bk 2 = 1 (7.4.24)

and where tpk is a random variable that is uniformly distributed on the interval [0,2r_] for each k.

The probing signal v2[n] of Eqn. (7.4.21) does not have the troublesome peaks of vl[n] of Eqn.

(7.4.20). We note that v2[n] is effectively the same as passing a white noise signal through a filter

with magnitude IVN(O.Xk)l.

We now present a final modification to the probing signal strategy that we have been

developing. Since we know what t_get closed-loop bandwidth we want, we know how small the

cumulative frequency-domain error Ecumf,Nn(O_k ) must become for the worst-case, smallest

magnitude nominal model to have a sufficiently small multiplicative uncertainty bounding function.

That is, using Eqns. (7.4.5-6) we find

IG (eJ r-°kT, t))1Asun(eJC°k T, 0) = E--cumf, Nn(COk ), Vo_ k.

Now, using the requirement of Eqn. (7.4.9) we find that, if

E--cumf, Nn(mk ) = I(eJ°)k T- 1) / Ctc 1 + ll( inf {IG(eJ°)kT,0)l} ),

0e®

(7.4.25)

(7.4.26)
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for all C0k,thenthetargetclosed-loopbandwidthcanbeattainedfor all possiblenominalmodels.

Thisrealizationsuggeststhestraightforwardmodificationfor ourprobingsignalstrategy.

161

MODIFICATION: If, attime indexn, Eqn.(7.4.26)is satisfiedfor a givenfrequency(Ok,

thenthecorrespondingmagnitudecoefficientIVN(O)k)Ishouldbesetto zeroin the

time-domainexpressionfor theprobingsignal.

In this way,westopunnecessarilyexcitingtheplantatthefrequency0_ sincewehavealready

gatheredsufficientinformationat this frequency.

7.4.4 Other ProbingSimaal Strate_es

In this subsection, we provide a more general discussion of probing signal strategies for use

with the robust estimator. In the previous section, we saw how the disturbance rejection properties

of the closed-loop system affect our choice of a probing signal. Consider a situation where we are

using the robust estimator in combination with the control-law of Section 7.3 and the probing

signal strategy of Subsection 7.4.3. In this ease, we expect the bandwidth of the nominal

closed-loop system to increase over time. Initially, the plant estimate will be poor so the

compensator gain c will be small to guard against the large modeling uncertainty. Thus, initially the

probing signal, which acts as an input disturbance to the plant, will not be rejected by the loop and

we will have, roughly speaking, an open-loop identification problem with the probing signal

providing most of the plant input signal. In this case, the probing signal need not be large.

Needless to say, initially the closed-loop system will have very poor command-following

properties because of the low loop gain. Now, as the robust estimator identifies the plant,

successively larger values of the compensator gain can be used as the plant uncertainty is

decreased. However, a larger compensator gain will result in improved disturbance rejection

properties of the closed-loop system. So, as the closed-loop bandwidth increases, we must use

successively larger probing signals to gain any new information. That is, the better that we

identify, the harder it is to gain any additional information. In practice, what can occur is that the

target closed-loop bandwidth can be almost achieved, so that the loop does a good job of rejecting

the probing signal. In this case, the probing signal must be very large if we want to actually

achieve the target closed-loop bandwidth.

It is stressed again that there are as many probing signal strategies as there are different
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adaptivecontrolproblems.Thechoiceof astrategydependson what is known and what the

relative importance of different objectives is in a given problem. In this thesis we do not provide a

comprehensive treatment of this issue of probing signals. However, since the characteristics of the

robust estimator affect the choice of a probing signal strategy, we will discuss several illustrative

strategies and point out the different characteristics of each. In each case, we are interested in

generating a probing signal that will allow the robust adaptive control system to increase the

nominal closed-loop bandwidth to some target value. In the following discussion, we ignore any

contribution of the reference signal to the plant input signal and instead compute the spectrum of the

probing signal that is required as if it were the only excitation in the system. Thus, we take the

viewpoint that, when the probing signal starting condition of Subsection 7.4.2 is true, we introduce

a probing signal that we know will do the job until we reach the target closed-loop bandwidth.

Again, the problem is that, during the period of time that the probing signal is present, it is

disturbing the system. We do not treat this tradeoff rigorously but incorporate it into our arguments

as the reason for wanting to use a small time-domain probing signal.

Strategy 1: (Strategy of Subsection 7.4.3)

Description: We compute the required spectrum at the plant input assuming that the plant is

the smallest magnitude nominal plant. Then, we use our knowledge of the current disturbance

rejection properties of the closed-loop system to compute the required spectrum of the probing

signal. The final time-domain version of the probing signal is generated using a sum of all of the

required sinusoids.

Characteristics: The above strategy results is a relatively fast adaptation time. In principle,

if the assumptions made in the probing signal development of Section 7.4.3 are fulfilled, this

strategy can result in the attainment of the target closed-loop bandwidth in roughly the time length

of the N-point DFT. However, the time-domain probing signal can be quite large since it is the

sum of many sinusoids. In addition, the use of the worst-case, smallest magnitude nominal plant

in the computation of the required spectrum means that the probing signal spectrum may be larger

than that required for the identification of the true plant. That is, if the true nominal plant rolls-off

at a much higher frequency than the assumed worst-case nominal plant, then the probing signal that

is computed using this strategy will have an unneccessarily large magnitude in the frequency range

between the two different roll-off frequencies.

Strategy_ 2:

Description: Same as Strategy I except that the final time-domain version of the probing

signal is generated by using successive N-point time sequences of each of the required sinusoids
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alone. Thatis, giventhedesiredspectrummagnitudeIVN(Oh_)l,we generatetheprobingsignalas

follows.

v[n] = IVN(O0)I, for n = 0,.., N-1

IVN(¢01)Isin(27rn / N ), for n -- N,.., 2N-1

OOO

IVN(O._k)I sin( 2 7r k n / N ), for n = koN,.., (k+l)°N - 1

OOO

(7.4.27)

IVN(CO(N/2))I sin( 7r n ), for n = (N/2)oN .... (N/2+I).N - 1

where N is the DFI" length. In this way, we do not have to use a large time-domain probing signal

and we are only disturbing the system at one frequency at a time.

Characteristics; The above strategy results is an extremely long adaptation time and is

presented only to make a point. There is a trade.off between the size of the time-domain probing

signal and the speed of adaptation (identification). In Strategy 1, the time-domain probing signal is

large; however, the target closed-loop bandwidth is achieved in about N sample times. In Strategy

2, the time-domain probing signal is much smaller (potentially only 1/N as big as Strategy 1);

however, the target closed-loop bandwidth is not achieved until about (N/2)oN time samples.

Strate_ 3:

Description: Same as Strategy 1 except that we use a stage-by-stage learning process with

regard to which nominal plant model we use in our computation of the required probing signal

spectrum. We are trying to avoid the problem that was described in Strategy 1 concerning the use

of the worst-case, smallest magnitude nominal plant. A heuristic approach could be used where we

first introduce a probing signal that would result in the achievement of the target closed-loop

bandwidth for, say, the largest magnitude nominal plant that we may have. If the probing signal

was not rich enough for the adaptive control system to achieve the target closed-loop bandwidth

during the f'u'st N time samples, then the probing signal would be increased under the assumption

that the nominal plant model was somewhat smaller. This process could be carded out in stages

over each N time sample period until the required probing signal was reached.

Characteristics: This strategy will result in performance that is similar, but slower than

Strategy 1. Stategy 3 requires several N time sample length intervals, depending upon the size of

the gradations by which the probing signal is increased at each stage. The advantage is that

Strategy 3 requires a smaller probing signal than Strategy 1. Thus, we once again have an example
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of thetrade-offbetweenadaptationspeedandprobingsignalsize.

Later,in Chapter9, wewill usethespecificprobingsignalstrategyof Subsection7.4.3,that

is, Strategy1. It ishopedthatthepresentationof theotherstrategiesprovidesinsightthatmaybe
usefulto somefutureresearchers.As will bediscussedlaterin thefinal chapterof this thesis,the

issueof probingsignalchoiceis anareafor futureresearch.

7.5 Conclusion

In this chapter, we have given a rather qualitative presentation of some of the remaining

issues involved in the development of a complete robust adaptive control system. For illustrative

purposes, we have developed a simple control-law update algorithm that can be used in

combination with the robust estimator. In addition, for this simple control-law update algorithm,

we have suggested an example strategy for the introduction of a probing signal into the closed-loop

adaptive system. These results will later be used in the simulation examples of the thesis_

Again, this chapter was meant to tie together the many functional blocks of a complete robust

adaptive control system, thereby illustrating the role of the robust estimator. The probing signal

discussion of this chapter constitutes 0nly a beginning to the investigation of this issue. However,

it is important to emphasize that the robust adaptive control framework that we have provided,

allows for the formulation of such probing signal strategies using current frequency-domain

information. That is, with reference to the modification that was described at the end of Subsection

7.4.3, we have on-line knowledge of where the plant has been identified well and where it hasn't,

in the frequency domain.
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CHAPTER 8.

SIMULATIONS OF THE BASIC BUILDING BLOCKS OF THE ROBUST

ESTIMATOR

In this chapter, we will illustrate the properties of two of the basic building blocks of the

robust estimator by considering several simulation examples. The robust estimator is a complex

combination of several simpler building blocks. Later, in Chapter 9, we will perform simulations

of the robust estimator as a whole; however, when simulated as a whole, it is difficult to

understand the properties of the individual components of the robust estimator. Thus, in order to

be able to understand the behavior of the complete robust estimator we must fu'st fully understand

the properties and behavior of the robust estimator's individual components. This simulation

chapter is a logical follow-on to the signal processing theorems of Chapter 2. We will be

simulating the results of Chapter 2 using the design rules and insight of Chapter 6. Specifically, in

the present chapter we examine the properties of: 1) the time-domain bounding method of Theorem

2.4 that is used in the time-domain parameter estimator of Chapter 4; and 2) the frequency-domain

error bounding method of Theorem 2.2 that is used in Sections 5.2-5.3. We will use a simple

first-order plant, with no unmodeled dynamics, and several different types of input signals in the

simulations of this chapter. We use many types of input signals so that we can understand the

robust estimator's components under many excitation conditions. The understanding gained in this

chapter will be very useful in understanding the properties of the robust estimator as a whole in the

following chapter.

8.1 Plant Description and Design Choices

8.1.1 Plant Description

Consider the following plant which we will use throughout this chapter.

Continuous-time Plant: He(s) = 1 / (s + 1) ¢:_ h(t) = e -t, t > 0. (8.1.1)

Choosing the sampling period T=n/5, corresponding to a sampling frequency C0s=10 rads/sec.,

which is ten times the continuous-time pole, we find that the zero-order hold equivalent of the

above continuous-time plant is

Discrete-time Plant: H(z) = r/(z - p) ¢:, h[n] = g pn, n > 1 (8.1.2)

where

r = (1 - e -T) = 0.46651; p = e -T = 0.53349; and g = r/p = 0.87446. (8.1.3)



Chapter8 Page166

We compute

IH(eJ°_kT)l= r / _/( cos(2 _ k / N) - p )2 + sin(2 g k / N) 2 , for k = 0,..., N-1. (8.1.4)

where again o_=(k / 1V)ms.

In the following simulations we will assume that the input signal u[n] is always less than

unity, so Umax=l in the signal processing theorems.

8.2 Simulations of Time-domain Bounding

In this subsection, we wiU present simulation results that illustrate the time-domain bounding

mechanism of Theorem 2.4. This theorem is used to find a time-domain bounding function on the

error signal, due to the unstructured uncertainty, in the time-domain parameter estimator of Chapter

4. For the purposes of this chapter, we consider the computation of a time-varying bound on ly[n]l

where

y[n] = h[n], u[n] (8.2.1)

and h[n] is the plant given by Eqn. (8.1.2). With reference to Theorem 2.4, we define the

following time-varying bound y[n] as follows,

ly[n]l < y[n], n > 0,

where

(N/2)-1

y-_n] = 1 { IH(eJc°0T)l IUNn(o_0)I + 2 _ IH(ej°_T)l IUNn(COk)l
N k=l

+ IH(eJ°_(N/2)T)I IuNn(o_(N/2))I } + 2 Urea x _ Ih[i]l.
i=N

(8.2.2)

(8.2.3)

Oo oo

Y,ht l,--Y
i=N i=N

g pi = g pN / (1 - p). (8.2.5)

where we have used the results of Appendix C to find a closed-form for the summation,

First, we must choose the DFT length for the time-domain bounding mechanism. To gain insight,

we find an equivalent expression for the bound of Eqn. (8.2.3),

N-1

y[n] = 1 { _ IH(eJ°_kT)l IUNn(O_k!l } + 2 Uma x g pN / (1- p), (8.2.4)
N k=0
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In Section6.5,wediscussedthetradeoffbetweenthetwo termsof Eqn. (8.2.3). For the

parameters of the example that was described in the previous section, we find that for N=6 the

second term of Eqn. (8.2.4), i.e. the remainder term, is 0.086428. This is a small number

compared to the values of y[n] that we expect to observe. For example, since we assumed that

Umax=l, consider the output of the plant of Eqn. (8.1.2) for a unity magnitude sinusoid at a

frequency that is less than 1 rad/sec., i.e. the pole of the plant. In this case, the output y[n] will be

on the order of unity. Thus, the remaider term 0.086428 is an order of magnitude smaller than the

plant output. We conclude that, based only on the requirements of the time-domain bounding

mechanism, a good choice for the DFT length is N=6. In the following subsection we will choose

the DFT length for the frequency-domain bounding method to be N=50. In this case, the

remainder term is only 8.51416x10 -14. However, as was discussed in Section 6.5, the bounding

function of Eqn. (8.2.3) tends to increase with N for some wideband excitations, as will be seen in

the simulation examples.

Before presenting the actual simulation results, we make some observations concerning the

bound of Eqn. (8.2.4) and hence Eqn. (8.2.3).

Observations;

1) Eqn. (8.2.4) is a tight bound on ly[n]l when the significant terms in the sum

N-1

H(eJe-_kT) UNn(e_) WN "kn,
k=0

(8.2.6)

have the same phase.

2) As was observed in Subsection 6.5, if u[n] is a sinusoid with frequency O)k=(k / N)C0s, then

IONn(o_k)l will be nonzero for only one or two terms in the bounding summation and,

consequently, Eqn. (8.2.4) will be a tight bound.

3) As was also observed in Subsection 6.5, if u[n] is a wideband excitation, then the bound of

Eqn. (8.2.4) can increase with the square root of NI the DFT length.

Now we present simulations showing the actual value of y[n], as well as the time-varying

magnitude bound computed using Eqn. (8.2.3).

Simulation 8.2.1: Sinusoidal Input, N=6

For this simulation we use the sinusoidal input signal
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u[n] = sin( (2re/ 5) n ) = sin(2 n T), n > 0. (8.2.7)

So, since the frequency of this input signal corresponds to 0)=2 rads/sec, we find that for n > N- 1,

UNn(0)k ) will have energy at 2 rads/sec and 0)s-2=8 rads/sec. However, for our choice of N=6,

the discrete frequencies are ¢Ok= 0, 1.67, 3.33, 5.00, 6.67, and 8.33 rads/sec. This means that for

n > N-l=5, the values of IUNn(O)k)l will be a result of a two sine functions, one centered at 2

fads/see and the other one centered at 8 rads/sec, as was shown for the case of a disturbance in

Eqn. (6.4.4). Thus, in terms of the bounding function of Eqn. (8.2.3), IUNn(0)k)l will be the

largest for k=l with the other terms contributing smaller amounts to the sum. A consequence of

this dominance by one term is that the bounding function will be relatively tight, but not as tight as

in the case where the sinusoid frequency corresponds to one of the discrete frequencies oak. The

output signal y[n], as well as the computed bounds y[n] and -y[n] are shown in Figure 8.1. Since

u[n] is zero for n < 0, there is a small transient in the bound until n=5 (3.14 sees.) at which time 6

data points have been collected for computing IUNn(0)k)l. As can be seen in Figure 8.1, the bound

y[n] has a component that oscillates with the same frequency as the input signal u[n].

Simulation 8.2,2: Sinusoidal Input, N=50

For comparison, we again use the sinusoidal signal of Eqn. (8.2.7) and compute the bound

y[n] using the longer DFT length, N--50. The output signal y[n], as well as the computed bounds

y[n] and -y[n] are shown in Figure 8.2 for N=50. In this case, there is a much longer, more

conservative transient in the bound than in the case of N-6. However, we also note that for n >__

N-1=49 (30.79 sees.), the bound is a constant and is actually tighter than in the N=6 case. This is

a consequence of the fact that for n > N-l, IUNn(0)k)l will be nonzero for only k=10 in Eqn.

(8.2.3), since for N=50 the sinusoid frequency corresponds exactly to one of the discrete

frequencies of the 50-point DFT. That is, for N=50, 0)k=0)10=2 rads/sec.
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Figure 8.1: Plant Output y[n] and Bounds y[n] and -y[n] for Sinusoidal Input and N=6.

( y[n] = _, y[n] and -y[n] -- .... )

1 I I I 1 t

0.0 I0.0 20.0 30.0 _0.0 50.0 60.0 70.0

TIME IN SEC.

m m

Figure 8.2: Plant Output y[n] and Bounds y[n] and -y[n] for Sinusoidal Input and N=50.

( y[n] - , y[n] and -y[n] = .... )



Chapter8 Page170

Simulation 8.2.3: Square-wave Input, for N=6

For this simulation we use the square-wave input signal, u[n]=(u[n] periodic with period 20)

for n > 0, where

u[n] = f 1, for 0 < n < 9 (8.2.8)

l-1, for 10 < n < 19.

The fundamental frequency of u[n] is 0.50 rads/sec., so we expect UNn(co k) to have energy at this

fundamental frequency and its harmonics at 1.0, 1.5, 2.0,.., 9.0 and 9.5 rads/sec. However, the

actual DFT, UNn(C0k), will depend on the time index n and the DFT length N. The output signal

y[n], as well as the computed bounds y[n] and -y[n] are shown in Figure 8.3. Again, since u[n]

is zero for n < 0, there is a small transient in the bound until n=5 (3.14 sees.) at which time 6 data

points have been collected for computing IUNn(C.0k)l. The small value of N results in a tight bound.

ff a larger value of N is used then the bound can be conservative. This possibility is addressed in

the next set of simulations.

Simulations 8.2,4-7: Square-wave Input, for N-20. 50. 90 and 100

We use this case of a square-wave input to do a simulation study of the effects of the DFT

length N on the bound y[n]. In Figures 8.4-11 we show both the time-domain bound and

IUNn(tx_k)l at n=99 (62.20 sees.), for the cases of the DFT length N being 20, 50, 90 and 100.

First, we notice that, if the length of the DFT is the same as a multiple of the period of the input

signal u[n], then the time-domain bound reaches a constant steady-state value. That is, for the

eases of N=20 and 100, after the initial transient ends at time index N-I, the time-domain bound

reaches a constant steady-state value which is the same for both cases. The DFT magnitudes for

these cases, see Figures 8.8 and 8.11, show that the discrete frequency points o k correspond to

the fundamental and harmonic frequencies of the square wave. Thus, the sum of Eqn. (8.2.3) has

only 5 nonzero terms and, hence, is a relatively tight bound. For the cases of N=50 and 90, the

sum of Eqn. (8.2.3) has many nonzero terms as can be seen from Figures 8.9-10. For these cases,

we see from Figures 8.5-6 that the steady-state time-domain bound is more conservative than for
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thecases of N=20 and 100. We also observe, from a comparison of the time-domain bounds for

the cases of N-50 and 90, that the bound increases with N.

As a final note, we see that for this square-wave input signal the bounding function is more

conservative than for the case of a pure sinusoidal input signal. This is because of the difference in

the number of significant terms in the sum of Eqn. (8.2.3). Consider the case of N=50 where, as

can be seen from Figure 8.9, there are many terms that are significant in the sum of Eqn. (8.2.3).

For the sinusoidal input case, there is only one term in the sum for n > N-1.
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Figure 8.3: Plant Output y[n] and Bounds y[n] and -y[n] for Square-wave Input and N=6.
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Simulation 8.2.8: Impulses Input, for N=6

For this simulation we use the input signal

u[n] = 0.02 sin(re n) / sin(0.02 _ n), n > 0. (8.2.9)

where, in practice, we use L'Hopitars rule to find that

u[n] = cos(_ n) /cos(0.02 _ n), when sin(0.02 _ n) = 0. (8.2.10)

This signal is simply a sequence of unit impulses at multiples of 50 time samples, which have

alternating sign. The output signal y[n], as well as the computed bounds y[n] and -y[n] are shown

in Figure 8.12 for N=6. From this figure we see that the small value of N results in good tracking

for the time-domain bound. For the period of time from n=5 (3.14 sees.) to n=49 (30.78) secs.,

the bound reduces to the remainder term of 0.086428 in Eqn. (8.2.4).

Simulation 8.2.9: Impulses Input, for N=50

For this simulation we again use the input signal of Eqns. (8.2.9-10) except that now we use

the longer DFT length of N=50. For this choice of N and input signal, IONn(C0k)l is constant and

equal to unity for all k. Thus, the time-domain bound is a constant for all n as shown in Figure

8.13. For _is large value of N we get no tracking of the plant output.
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Simolation 8.2.10: Pseudo-random Input. for N=6

For this simulation we use a pseudo-random input signal. To generate this signal, a

pseudo-random signal that was white and had a gaussian probability distribution, with zero mean

and standard deviation 0.75, was passed through the following first-order filter, whose pole

corresponds to a continuous-time pole of 1 rad/sec for our choice of sampling period.

T(z) = 0.46651 z/(z - 0.53349) (8.2.11)

To yield the signal u[n], the output of this f'dter was then passed through a saturation function to

guarantee that lu[n]l < 1. The input signal u[n] is shown in Figure 8.14. The output signal y[n], as

well as the computed bounds y[n] and -y[n], are shown in Figure 8.15. For this short DFT

length, the bound tracks the actual plant output very well. This is because the bound is based on

the values of the input signal at only 6 time indices.

Simulations 8.2.11-12: P_¢udo-random Input, for N=50 and 100

For these two simulations we again use the pseudo-random input signal of the previous

simulation. We examine the effect of using the longer DFT lengths of 50 and 100 on the

conservativeness of the bound. We have previously observed that the bound should increase with

the square root of N for the kind of input that we are using in these two simulations. First, in

Figure 8.16, we show IUNn(t.OK)I for N=50 and for n=100 (62.83 secs). From this figure we see

that many terms in the sum of Eqn. (8.2.3) will be significant, so we expect conservatism in the

bound. Now, the output signal y[n], as well as the computed bounds y[n] and -y[n] are shown in

Figures 8.17-18 for the cases of N=50 and 100, respectively. Considering first the case of N=50,

we see that the computed bound is conservative once the initial transient is over, although during

the transient the bound is quite tight. The bound doesn't vary as much as the actual output signal

since its value depends, essentially with equal weight, on the last 50 time samples of the input

signal whereas the actual output depends most strongly on the 5 or 6 most recent values of the

input, via the plant. Thus, there is a kind of averaging process that is occurring in the computation

of the time-varying bound. For the case of N=100, the bound is even more conservative.

Comparing Figures 8.17 and 8.18, we see that the steady-state value of the bound increases from

roughly 1.4 to 2 as N increases from 50 to 100. This is consistent with our analytically derived

prediction that the bound increases with the square root of N.
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8.3 Simulations of Frequency-domain Bounding

In this subsection, we will present simulation results that illustrate the frequency-domain

bounding method of Theorems 2.1-2. This theorem is used to find a bounding function on the

frequency-domain error, due to the use of finite-length data, in the frequency-domain estimator of

Chapter 5. For the purposes of this section, we consider the true plant to be the fin'st-order plant

H(z) of Section 8.1. From Theorem 2.1,

YNn(a,,k ) = H(eJOk T) UNn(O)k) + ENn(O)k), for k = 0 .... N-l, (8.3.1)

where we must find a magnitude bound on the function ENn(O)k). In Chapter 6, this problem of

using finite-length data was viewed as an "end-effects" problem. The result of Corollary 2.1

represents what we will refer to as the "worst-case" bound on the end-effects error. Since we have

information about u[n] that is learned on-line, we can compute the fighter bound given by Theorem

2.2 where M is chosen as described in Chapter 6. This frequency-domain bounding function is

given by

M-1

E--Nn(0_k) = _ Ih[i]l IUNn'i(o)k) - UNn(o_k)l + 2 Uma x g pM (M- M p + p) / (1- p)2,

i=l (8.3.2)

fork= 0 .... N-l,

where we have used the results of Appendix C to fred a closed-form expression for the summation,

i Ih[i]l = _ i g pi = g pM (M- M p + p) / (1- p)2 (8.3.3)

i=M i=M

Now, we will discuss the choice of the memory length M and the DFT length N for the

frequency-domain bounding method. As was explained in Section 6.6, we choose

M = integer(c0 s / O_slow) = 10, (8.3.4)

where 0tslow=l rad/sec, in our example. Further, we choose the DFT length for the

frequency-domain estimator to be five times the memory length M so as to lessen the effects of

using finite-length data. So, we use N=5M=50. Since we assume that Umax=l, we find that the

remainder term, in Eqn. (8.3.2), is 0.078014 for our choice of M=10. For reference, if M=I, then

the remainder term is 4.2871. Note that the remainder term for the case of M=I corresponds to the

definition of the "worst-case" bound Ewc, which was defined in Eqn. (6.6.19).

In the following simulations, we will compute the frequency-domain error bounding function
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thatwasdefinedin Chapter5, for _e disturbance-freecase.Thatis, we will compute a magnitude

bounding function, Ef, Nn(0)k), on the magnitude of the error, Ef,Nn(Ok), between the

frequency-domain estimate of the plant and the true plant H(eJC°k T) as shown below.

IYNn(o.) k) 1UNn(o.,'k) - H(eJC°k T) l= IEf, Nn(%)l < E--f,Nn(Ok), (8.3.5)

where

Ef, Nn(t-o k) = ENn(o k) /IUNn(COk)l, for k=0 .... N-1. (8.3.6)

For future reference, we use Ewcf, Nn(Ok ) to denote the "worst-case frequency-domain" error

bounding function generated using M=I in Eqn. (8.3.2). That is,

Ewcf, Nn(Ok ) = Ewe/IUNn(Ok)l = { 2 Uma x g p/(1- p)2 } /iUNn(Ok) I= 4.2871 /IUNn(COk)l,

for k- 0,.., N-1. (8.3.7)

Before presenting the simulation results, we will again make several observations.

Observations:

1) For N=50 and the input signals that we will be considering, the worst-case

frequency-domain error Ewcf, Nn(Ok ) of Eqn. (8.3.7) is not small as compared with the

values of tH(eJC°kT)l, so considerable additive error is introduced, if we choose to use the

worst-case bounding function.

i

2) For our choice of M-10, the remainder term of Eqn. (8.3.2) is much smaller than Ewe.

Thus, if ONn-i(o_k) = ONn(Ok) and/or if lu[n]l is much smaller than Umax, then the bound of

Eqn. (8.3.2), using M=10, will yield a much tighter bound than Eqn. (8.3.7).

3) If u[n] is periodic with period N, then UNn-i(ok)=UNn(C.Ok ) for all k, for n-i > N- 1.

Now, we present simulations that will show both the actual error function IEf, Nn(C.0k)l and the

time-varying, frequency-domain bounding function Ef, Nn(Q_k), which is computed using Eqn.

(8.3.2). One difficulty with illustrating our results is that Ef, Nn(Ok) is both a function of time and
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frequency. To observe time-variations, we will present the time-varying values of Ef, Nn(o_ k) at a

specific frequency. In addition, we will provide snap-shots of Ef, Nn(t.0 k) versus frequency at a

specific time.

Simulation 8.3.1: Sinusoidal Input

For this simulation we use the sinusoidal input signal of Eqn. (8.2.7). Figure 8.19 shows

the values of IEf,Nn(O._k)l, Ef, Nn(c.o k) and Ewcf, Nn(0_k ), versus the time index n, for the

frequency O_k=O_10=2 rads/sec. Since the sinusoid has a frequency of 2 rads/sec, it is expected that

the actual error will become small as can be seen in Figure 8.19. It is also clear from this figure

that the bound Ef, Nn(_10) is superior to the worst-case bound. That is, even under good

excitation conditions, the worst-case bound still doesn't get any smaller than 0.17149. For

comparison, the bound Ef, Nn(_10) becomes 0.0031206 in steady-state, which is a factor of 55

smaller than the worst-case bound. In Figure 8.20 we show IEf, Nn(O._k)l, Ef, Nn(c0 k) and

Ewcf, Nn(0_k ) versus frequency for the time index n=5 (3.14 sees.). This figure shows that during

the transient, there is information at frequencies other than just 2 rads/sec. For n > N-1--49,

UNn(COk) is zero for all frequencies except tOX0 so that IEf, Nn(t.0k)l will be infinite at these

frequencies, that is, it will provide no information at the frequencies other than co10=2 rads/sec. In

Figure 8.21, we show both the cumulative frequency-domain error bounding function

Ecumf, Nn(Ct_k) and the actual error magnitude IEcumf, Nn(O_k)l between the true plant and the

cumulative frequency-domain estimate, both of which were defined in Section 5.3. These

cumulative values are shown for time index n=l 11 (69.74 secs.). This figure again shows how the

transient yields information at many frequencies other than just that of the sinusoidal input. The

opposite peaks at 4 rads/sec are due to the fact that in Eqn. (8.3.2) the phase cancellations that

occur in the actual frequency-domain error function are ignored and, instead, all terms are summed.
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Simulation 8.3.2: Square-wave Input

For this simulation we use the square-wave input signal of Simulation 8.2.3. Figure 8.22

shows the values of IEf, Nn(COk)l, Ef, Nn(O._k) and Ewcf, Nn(O)k ) versus the time index n, for the

frequency o_=co10=2 rads/see. For time indices n--4 (2.51 sees.), 9 (5.65 sees.), 14 (8.80 sees.),

19 (11.94 sees.) .... we see that the input signal has no frequency component at 2 rads/sec,

resulting in an infinite value of the frequency-domain error IEf, Nn(o_10)l. This lack of some

frequency components for some time indices is also apparent from Figure 8.9, which shows

IUNn(COk)l for n=99 (62.20 sees.). In Figure 8.23, we show IEf, Nn(O_)l, Ef, Nn(co k) and

Ewcf, Nn(C0k ) versus frequency for the time index n=59 (37.07 sees.). The square-wave input

used in this simulation results in a large frequency-domain error bound relative to the magnitude of

the plant, since it has the worst-case magnitude of 1 for all time and, for some time indices, it has
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theworst-casephasefrom thepoint of view of ourDFTestimationmethodwhenusingawindow

lengthof 50. Considerthesituationatn=59,atwhichtime the DFT of UNn(Ok) contains input

data from time indices m=10 to 59. From m--0 to 9 the input signal is +1 and from m=50 to 59 the

input signal is -1. Thus, the error nearly achieves its worst-case value at o---0, since the signs of

u[n] at the two ends of the DFT are opposite. That is, in this situation, with respect to our window

length, the input signal looks about as unperiodic as it can be, thus yielding large errors for our

frequency-domain bounding technique. In Figure 8.24, we show both the cumulative

frequency-domain error bounding function Eeumf, Nn(C0k ) and the actual error magnitude

IEcumf, Nn(Ok)l between the true plant and the cumulative frequency-domain estimate, for time

index n=l 11 (69.74 sees.). This figure shows that our bounding technique provides a tight bound

on the actual error associated with our cumulative frequency-domain estimate. As expected, the

frequency ranges where we do good identification correspond to the frequency ranges where we

have input signal energy as can be seen from Figures 8.24 and 8.25. As a final note, by comparing

Figures 8.9 and 8.25, we see how IUNn(Ok)l changes from time index 99 to 100.
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Simulation 8.3.3: Impulses Input

For this simulation we use the input signal of Eqn. (8.2.9) for which IONn(O_k)l=l, for all k

when N=50. Figure 8.26 shows the k,alues of IEf, Nn(C0k)l, Ef, Nn(o) k) and Ewcf, Nn(Cok ) versus

the time index n, for the frequency O_k=CO10=2 rads/sec. Our frequency-domain error bounding

function works very well as compared with the worst-case bound which has the expected value of

4.2871, since again IUNn(O._k)l is unity for all frequencies. In Figure 8.26, our bounding function

approaches the expected value of 0.078014 during the time periods between the impulses, while the

actual error approaches effectively zero during these time periods. For this example, the bounding

function Ef, Nn(O_k) shown in Figure 8.26, holds for an frequencies, not just _10" However, the

actual error IEf, Nn(COk)l differs with frequency as can be seen in Figure 8.27, which shows

IEf, Nn(Cz_k)l, Ef, Nn(a)k) and Ewcf, Nn(O_k ) versus frequency for the time index n=100 (62.83

secs.). In this figure, the actual error IF_.f,Nn(Cok)l is simply twice the magnitude of the plant

transfer function. At the end of the simulation, see Figure 8.26, the cumulative frequency-domain

error bounding function, Ecumf, Nn(O)k ), is 0.078014 at all frequencies, while the actual error

magnitude IEcumf, Nn(COk)l, between the true plant and the cumulative frequency-domain estimate,

is zero to the numerical accuracy of the simulation, at all frequencies. That is, from Eqn. (2.2.2) it

can be seen that IENn(e0k)l will be less than

Ih[i]l = 4.25708 x 10 -14, (8.3.8)

i=N

for n=49 since UN49-P(O._k)=UN49(eOk ) for p=l, 2 ..... 49, in this example.
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Simulation 8.3.4: Pseudo-random Input

For this simulation we use the pseudo-random input signal of Simulation 8.2.10. Figure

8.28 shows the values of IEf, Nn(O._k)l, Ef, Nn(o) k) and Ewcf, Nn(O_k ) versus the time index n, for

the frequency O_k=0310=2 rads/see. In Figures 8.29-30, we show IEf, Nn(Cok)l, Ef, Nn(e0 k) and

Ewcf, Nn(O_k ) versus frequency for the time indices n=59 (37.07 sees.) and n=74 (46.50 sees.).

These figures show: 1) the superiority of our bounding function Ef, Nn(O_k) with respect to the

function Ewcf, Nn(o_), and 2) how the bounding function Ef, Nn(03 k)worst-ease bounding

provides information in different frequency ranges at different times. In Figure 8.29, the actual

error IEf, Nn(O._k)l is too small to be seen in the plot. In Figure 8.31, we show both the cumulative

frequency-domain error bounding function Ecumf, Nn(C0k ) and the actual error magnitude

IEcumf, Nn(C0k)l between the true plant and the cumulative frequency-domain estimate, for time

index n=l 11 (69.74 sees.). This figure shows that, even for a random type of input signal, the

cumulative frequency-domain estimate is quite accurate and our bounding technique provides a

useful bound on the actual error corresponding to this estimate. In the passband of the filter used to

generate the input signal, that is, for frequencies less than 1 rad/see., our bounding methodology

provides a plant estimate which is guaranteed to have an error magnitude of less than about 5% of

the plant's magnitude. Note that the plant has a magnitude of approximately unity for frequencies

that are less than 1 rad/see.
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8.4 Conclusions

In this chapter, we have investigated the basic properties of the time-domain bounding

mechanism and the frequency-domain error bounding method. We list the following conclusions

concerning the time-domain bound:

1) It is sensitive to relationships between the length of the DFT and the cycle time of any

oscillations in the input signal u[n].

2) The more terms that make significant contributions in the frequency sum of Eqn. (8.2.3), the

more conservative the time-domain bound tends to be.

3) The time-domain bound increases with the square root of N for pseudo-random types of

input signals like the one described in this chapter.

We also summarize our conclusions for the frequency-domain error bounding method:

1) The worst-case frequency-domain error bounding function is too conservative to be of use

for moderate choices of the DFT length.

2) The frequency-domain error bounding method of Theorem 2.2 and Eqn. (8.3.2), where M

is chosen as described in Chapter 6, yields a useful frequency-domain bounding function for the

same DFT length for which the worst-case error bounding function is uselessly conservative.

3) The simulation with the pseudo-random input signal reveals that our frequency-domain error

bounding method can perform very well indeed for rich input signals.

These conclusions give us an understanding of the basic properties of'both the time-domain

bounding mechanism and the frequency-domain bounding method. Having established this

understanding, it will be easier to understand the more complex behavior that occurs when the

robust estimator is simulated as a whole.
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CHAPTER 9

SIMULATIONS OF THE ROBUST ESTIMATOR IN OPEN AND CLOSED LOOP

SITUATIONS

9.1 Introduction

In this chapter, we will illustrate the properties of the robust estimator through several

simulation examples. First, we present open-loop simulations that illustrate the properties of the

robust estimator itself. Then, we present closed-loop simulations of a robust adaptive controller

that uses the robust estimator. The chapter is organized as follows.

In Section 9.2, the example plant and disturbance that will be used throughout this chapter,

are described and analyzed. This lengthy section includes a development of all of the bounding

functions that are used in the robust estimator. Next, the open-loop simulations of the robust

estimator are presented in three parts, Sections 9.3 through 9.5. In Sections 9.3 and 9.4, we

present simulations that demonstrate the properties of some of the robust estimator's components.

These sections are meant to provide' insight so that we can understand the Simulations of the robust

estimator in Section 9.5. Specifically, in Section 9.3, we simulate the time-domain parameter

estimator of Chapter 4 that uses the time-varying dead-zone. In this section, the time-domain

parameter estimator is simulated for an ideal case, for anunmodeled dynamics alone case and for a

disturbance alone case. These simulation results will allow us to understand the individual effects

of unmodeled dynamics and a disturbance. In Section 9.4, we present simulations of the

frequency-domain bounding methodology alone, without a parameter estimator, so that we can see

how the robust estimator would perform if the parameter estimator worked perfectly. Then, in

Section 9.5, we present open-loop simulations of the robust estimator as a whole. We present a

simulation where the dead-zone based, time-domain parameter estimator is used and a comparable

simulation where the frequency-domain parameter estimator is used. The dead-zone based

parameter estimator will be shown to perform poorly. The simulation of the dead-zone based,

time-domain parameter estimator, in this section, is the logical follow-on to the simulations of

individual effects that are presented in Section 9.3. That is, in the robust estimator simulations of

Section 9.5, we include both unmodeled dynamics and a disturbance whereas in Section 9.3 we

examined these effects individually. A second purpose of Section 9.5 is to show the effect of using

different types of unmodeled dynamics on the robust estimator with the frequency-domain

parameter estimator. All of the open-loop simulations of Section 9.5 include both unmodeled

dynamics and a disturbance.

In Section 9.6, we present closed-loop simulations of an adaptive control system that uses a

simple pole-zero cancellation control-law in conjunction with the robust estimator. As in the
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open-loopsimulations of Section 9.5, all of the closed-loop simulations include both unmodeled

dynamics and a disturbance. The major conclusions of this simulation chapter are summarized in

Section 9.7. The bottom line of the closed-loop simulations is that the robust estimator can indeed

provide performance-improving information to a control-law update algorithm under the "right"

excitation conditions. In some of the closed-loop simulations, it will be necessary to introduce a

probing signal to enhance identification and, hence, provide the "right" excitation conditions.

9.2 Description and Analysis of Simulation Example

In this section, we describe the simulation example and discuss the satisfaction of the

assumptions of the robust estimator (see Chapter 3). In addition, we make several design choices

for the implementation of the robust estimator (see Chapter 6). While the main purpose of this

section is simply to present the simulation example, several subthemes will be developed. In

particular, we will show how the continuous-time unmodeled dynamics map over to discrete-time

unmodeled dynamics of approximately the same size, for this example. These results are consistent

with the approximations that were presented in Section 3.3.

Since this section is quite lengthy, we outline its organization. The continuous-time nominal

plant structure and the continuous-time unmodeled dynamics are described in Subsections 9.2.1

and 9.2.2, respectively. The design choices for the robust estimator, such as the sampling period

and the DFT lengths, are discussed in Subsection 9.2.3. In Subsection 9.2.4, we list four cases of

the plant example that will be used in our simulations. That is, we use four cases of our plant

model that have different combinations of parameter values and unmodeled dynamics. The

satisfaction of the various assumptions of the robust estimator, is the topic of Subsection 9.2.5. In

Subsections 9.2.6-8, the disturbance and input signals are described. The last subsection, 9.2.9,

describes a projection modification which will be used with both the time-domain and

frequency-domain parameter estimators.

9,2,1 Description of the Nominal Plant

Consider the following nominal plant which we will use throughout the rest of the chapter.

Gontinu0u_-time Nominal Plant:

or

GC(s) = bCo..,s..._c 1_

s2 - acl s - aC2

GC(s) = COn2 ( s / ( 2__mn_

s2 + 2_o_ n s + COn2 (9.2.1)

(9.2.2)
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where

acl = - 2_con ; bC0= con / 2_ ; and bCl = -at2 = COn2. (9.2.3)

We fred that the zero-order hold equivalent of the above continuous-time plant is

Discrete-time Nominal Pl_t;

where

O(z)=
z2 - a I z - a2 (9.2.4)

a 1 = 2 e-_con T cos ( "4 1 - _2 conT ) (9.2.5)

a2 = - e'2_con T (9.2.6)

b 0 = 1 - { K sin ( _/1 - _2 conT ) + cos ( _/1- _2 conT ) } e-_con T (9.2.7)

b 1 = { K sin ( _/1 - _2 conT ). cos (_/1 - _2 C0nT ) } e-_con T + e-2_conT

= 1 - a 1 - a2 - b 0 (9.2.8)

and where

K = ( 2 _2 _ 1 ) / ( 2_ _/1 - _2 ). (9.2.9)

The bounded parameter space Oc, in which the continuous-time parameter vector

0C=[aC 1 at2 bC0 bCl] T is contained, is defined by Eqn. (9.2.3) and the following

@c= {0 c I 0C=[acl(_,co n) aC2(co n) bC0(_,con ) bCl(con)] T

where _ e [0.2,0.8], con e [1,2] rads/sec, and _con > 0.4 sec. "1 }. (9.2.10)

Note that there are only two parameters, _ and con' that regulate the location of the single zero and

the two poles. The bounded parameter space O, in which the discrete-time parameter vector

0=[a 1 a2 b 0 bl] T is contained, is defined similarly by Eqns. (9.2.5-9) and the following

(9 = {0 ] 0=[al(_,con) a2(_,con) b0(_,con) bl(_,con)]W

where _ e [0.2,0.8], con e [1,2] rads/sec, and _con > 0.4 sec. "1 }. (9.2.11)
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As wasdiscussedin Subsection3.3.4,thediscrete-timeparametervector0 is theresultof a

mappingf(o)of thecontinuous-timeparametervector0c. Thatis, wesaythat0=f(0c)aO, where

O canbealternativelydef'medby Eqn.(3.3.30).

Ascanbeseenfrom Eqn.(9.2.1),thecontinuous-timeplant GC(s)hastwo complexpoles

andazeroonthereal axisat-2_c0n, which is twice thefrequencyof therealpartof thecomplex

polepair. Throughoutthefollowing analysisof theplant,thevarioussupremumsthatwewill need

to calculateoverthesetsOc andO, will actuallybecomputedusinga 101point grid. Thatis, an

ll-by- 11point grid of _ andcon will be used where the constraint, _c0n > 0.4 see. "1 eliminates 20

of the original 121 grid points leaving the aforementioned 101 points. In Figure 9.1, the complex

pole pair and the zero of GO(s,0 c) are superimposed for all 101 points of the grid. Similarly, in

Figure 9.2, the complex pole pair and the zero of the discrete-time nominal plant G(z,f(0c)) are

superimposed for aU 101 points of the grid where we have used a sampling period of T=7_/25 see.,

a choice that we Will later justify. In Figure 9.3, we show a log-log plot of the maximum and

minimum magnitude of GC(jo_,0 c) versus frequency, for all 0 c in O c. A linear scale version of

Figure 9.3 is shown in Figure 9.4 since we willbe using a linear scale in the presentation of the

simulation results.
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9.2.2 Description of flae Continuous-time Unmodeled Dynamics

In this subsection, we will describe the two types of unmodeled dynamics that we will be

using in the simulations to follow. For the purpose of illustration we will consider the hypothetical

situation where we know that the unmodeled dynamics are either:. 1) a multiplicative second-order

system with damping ratio between 0.3 and 1, and a natural frequency that is greater than 50

rads/sec., or 2) a time delay of no greater than 0.04 secs. Our strategy will be to fin'st find

continuous-time bounding functions, ACu(jco) and VCu(jco), that are valid for both the second-order

and the time-delay unmodeled dynamics. Recall that ACu(jco) and VCu(jco) are the bounding

functions that are required by the continuous-time assumptions of the robust estimator, as described

in Section 3.2. Later, we will use ACu(jco) and VCu(jco) to find discrete-time bounding functions,

Au(ejcoT) and Vu(ejcoT), that are valid for both the second-order and the time-delay unmodeled

dynamics interacting with our uncertain plant.

Consider the bounding function

f
ACu(jco) = J co / 25,

t 2,

for co < 50 rads/sec.

for co > 50 rads/sec.

(9.2.12)

With reference to Example 2 of Subsection 6.3.2, we find that the function of Eqn. (9.2.12)

bounds the magnitude of the unstructured uncertainty 8Cu(jco) of all second-order unmodeled

dynamics that have complex poles (i.e. _ < 1), and a natural frequency that is greater than 50

rads/sec. Figure 9.5 shows the bound of Eqn. (9.2.12) and 18Cu(jco)l for second-order unmodeled

dynamics with a damping ratio of 0.3 and a natural frequency of 50 rads/sec. In addition, the

bounding function of Eqn. (9.2.12) also bounds 18Cu(jco)l corresponding to all pure time delays that

are less than 0.04 secs. The bound of Eqn. (9.2.12) and 5Cu(jco)l for a time delay of 0.04 sees.

are both shown in Figure 9.6. In Hgure 9.7, we show the derivative function IdSCufJC0)/dc01 for

both second-order unmodeled dynamics with a damping ratio of 0.3 and a natural frequency of 50

rads/sec., and for the unmodeled dynamics of a 0.04 sec. time delay. For frequencies less than

about 25 rads/sec, IdSCu(jco)/dcol is less than 0.04 for both types of unmodeled dynamics.
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9.2.3 Design Choice_

The various design choices that were discussed in a general way in Chapter 6, are now

discussed in the context of this simulation example. This subsection is concise since the reasoning

behind these design choices was already discussed extensively in Chapter 6.

Choice of Sampling Period

Although we will perform our first simulations in an open-loop scenario, later in this chapter,

we will present some closed-loop simulations where we set the target closed-loop bandwidth to

C0tcl=5 rads/sec. We want our closed-loop system to have a bandwidth of 5 rads/sec, for all

possible nominal plants GC(s,0 c) with 0 c in O c, while being robustly stable to unmodeled

dynamics with magnitudes less than the bounding function of Eqn. (9.2.12). Consistent with our

discussion in Chapter 6, we choose the sampling frequency C0s=50 rads/sec., which is ten times the
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targetclosed-loopbandwidth.Thischoiceof samplingfrequencycorrespondsto asamplingperiod

of T-_/25---0.12566sees.We notethat(C0s/2)=25rads/sec.,which is thefrequencyatwhich the

unstructureduncertaintyboundof Eqn.(9.2.12)reachesunity. Thus,usingtheapproximationof

Eqn.(6.3.25),thediscrete-timeunstructureduncertaintywill belessthanunity for all frequencies
on theunit circle. With referenceto Figures6.1and 6.2 of Section 6.2, for our choice of sampling

period, T---_/25, the unmodeled dynamics will have a smaller effect on the discrete-time plant than

if we had chosen a faster sampling rate.

Choice of the DFT Length N t for the Time-domain Bounding Mechanism

In Section 6.5, we discussed the choice of the DFT length for the time-domain bounding

mechanism that is used in the time-domain parameter estimator. This DFT length, which we denote

by" N t, is chosen by making a tradeoff between the size of the remainder term, and the possible

conservatism of the bound for large N t. For the example of this chapter, we choose Nt=20. This

DFT length will later be shown, in Subsection 9.3.1, to reduce the remainder term to be the same

order of magnitude as the size of the bound itself.

Design of the Input/Output Filter F(z) for the Time-domain Parameter Estimator

As was described in Section 6.5, we must design the input/output filter F(z) that filters both

the plant input and the output signals before they are used in the time-domain parameter estimator.

In accordance with the rule of thumb given by Eqn. (6.5.3), we choose the filter

F(z)= 0.052881 z2

z2 -1.64799 z + 0.70087 (9.2.13)

which has unity D.C. gain and poles that correspond to the continuous-time poles of a

second-order system with 4--0.70711 and O)n=2 rads/sec., for our choice of sampling period,

T=_/25 secs. With reference to the nominal plant description of Subsection 9.2.1, we see that F(z)

and the discretized nominal plant have roughly the same bandwidth. Since the bandwidth of the

nominal plant is only coarsely known, this is the best we can do in terms of designing F(z).
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Choice of the Memory_ Length M for the Frequency-domain Bounding Method

From Subsection 9.2.1, we know that the real part of the complex pole pair of the

continuous-time nominal plant will be no larger than -0.4 see. "1. That is, we know that the

envelope of the impulse response of the true continuous-time plant will decay with a time constant

that is no slower than 2.5 sees. since the slowest pole of the nominal plant is also the slowest pole

of the true plant. Now, a continuous-t/me pole of -0.4 see. "1 maps to a discrete-time pole of

0.95098 for our choice of sampling period, T---n/25 see. Thus, the slowest pole of the true

discrete-time plant is 0.95098, since the unmodeled dynamics are assumed to be at

high-frequencies. Using the second approximation of Eqn. (6.6.24), we compute the rule of

thumb for a choice of M,

integer( (2n / T) / 0.4 ) = integer( cos / O_slow ) = 50 rads/sec. / 0.4 see. "1 = 125 (9.2.14)

where again -Otslow is the real part of the slowest pole of the continuous-time plant. This is only a

rule of thumb and, in factl we will choose a larger value of M=175 for our open-loop simulations.

This larger value of M will result in a tighter frequency-domain bounding function than if we had

just used the rule of thumb value of M. An even larger value of M will be used in the closed-loop

simulations as will be discussed later. We use these large values of M because we could potentially

have a very difficult identification problem considering our target closed-loop bandwidth of 5

rads/sec. That is, with reference to Figures 9.3-4, if we have the smallest magnitude nominal

plant, then we need to reduce the additive error in the frequency-domain to roughly 0.1 at 5

rads/sec, to be able to achieve our target closed-loop bandwidth of 5 rads/sec. This is so because,

in order to reduce the multiplicative modeling uncertainty to be unity at a given frequency, we must

reduce the additive error to be roughly the same size as the nominal model at that frequency,

depending on the phase. So, considering our discussion of Subsection 6.6.5 and Eqn. (6.6.13),

we see that it is advantageous to choose a larger value of M to help make the achievable additive

error be as small as possible.

Choice of the DFT Length Nf for the Frequency-domain Bounding Method

In Subsections 6.6.2 and 6.6.3, we derived two rules of thumb concerning a lower bound

for the choice of the DFT length for the frequency-domain bounding method. We denote this DFT

length by Nf, to distinguish it from N t, which is the DFT length for the time-domain bounding

mechanism. From Eqns. (6.6.25-26), and (9.2.14), we find that the first rule of thumb suggests
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thatNf bechosen such that

Nf > 125. (9.2.15)

The second rule of thumb, which is given by Eqn. (6.6.44), is based on frequency-domain

resolution requirements. From Figure 9.4, we expect that we will have to choose a large value of

Nf to guard against inter-sample variations in the vicinity of 2 rads/sec. Eqn. (5.7.11) can be used

to compute the "worst-case" a priori bounding function Vsu,wc(eJ°_T) and, thus, give us an idea of

what value of N is required. Note that in Eqn. (5.7.11), we must use the bounding functions,

Au(eJOT ) and Vu(eJC°T), whose development will be described in a future subsection. In any

event, using these bounding functions and Eqn. (5.7.11), we can compute (C0s/N)Vsu,wc(eJC°T)

for N=1000, as is shown in Figure 9.8. From this figure, we see that if the worst-case bounding

• function Vsu,wc(_Jc°T ) were used instead of the on-line computed bounding function Vsun(e jc°T)

of Eqn. (5.7.18), then we would have to add a safety factor on the order of unity in the frequency

range near 2 rads/sec. That is, in Eqn. (5.8.3) the additive safety factor would be

(O_s/2N)Vsu,wc(eJc°T), or half the values in Figure 9.8. Clearly, the frequency-domain resolution

requirements place the lower bound on our choice of the DFT length. Judging that the values of

Figure 9.8 are sufficiently small for our purposes, we choose Nf=1000. This DFT length will be

used in the frequency-domain bounding method and, hence, the frequency-domain parameter

estimator, throughout the rest of the chapter.
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9.2.4 Description of Four Cases for Simulation

In this subsection, we wiU describe four cases of the true plant that we will use in our

simulations. In these cases, we consider two different nominal models. We use a fast nominal

model with 4=0.2 and ran=2 rads/sec., which has a sharp frequency-domain peak because of the

small damping ratio. In addition, we use a slow nominal model with _--0.8 and _n=l rad/sec.,

which doesn't have a frequency-domain peak because of the large damping ratio. The pole-zero

locations for these nominal models are shown in Figures 9.9 and 9.10. These nominal models

were chosen because they have very different characteristics. In Figures 9.3 and 9.4, the fast

system corresponds to the maximum magnitude of the nominal model, except for a small frequency

range just before the 2 rads/sec, peak. In these figures, the slow nominal model corresponds to the

minimum magnitude. We will use these nominal models with different types of unmodeled

dynamics. We denote the ideal case of no unmodeled dynamics as Case 1 where we choose _=0.2

and C0n=2 rads/sec, in the nominal model of Eqn. (9.2.1) to yield:
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Case 1: ( 4=0.2 and ran=2 rads/sec, and no _lnm00eled dynamics )

GCtrue(S) = 4(s/0.8 + 1 )

s2+0.8 s+4 (9.2.16)

whose zero-order hold equivalent for the sampling period T---_/25 sec. is given by:

Case 1: ( __--0.2 and COn=2 rads/sec, and no unmodeled dynamics )

Gtrue(Z) = 0.62189 z- 0.56211

z2 - 1.84458 z + 0.90436 (9.2.17)

For Case 2, we use _=0.2 and oha=2 rads/sec, in the nominal model of Eqn. (9.2.1) and

second-order unmodeled dynamics with a damping ratio of 0.3 and a natural frequency of 50

rads/sec.

Case 2: ( 5---0.2 and ¢On=2 rads/sec, and second-order unmodeled dynamics )

GCtme(S) = 4 ( s / 0.8 + 1 ) o 2500

s2 + 0.8 s + 4 s2 + 30 s + 2500 (9.2.18)

whose zero-order hold equivalent for the sampling period T--rd25 see. is given by:

Case2: ( _--0.2 and O_r=2 rads/sec, and second-order unmodeled dynamics )

Gtrue(Z) = 0.57666 z3 - 0.65109 z2 + 0.12783 z - 0.0096407

z4 - 2.13562 z 3 + 1.46426 z2 - 0.30573 z + 0.020849 (9.2.19)

For Case 3, we use 4=0.2 and O_n=2 rads/sec, in the nominal model of Eqn. (9.2.1) and use

the unmodeled dynamics of a 0.04 sec. time delay.

C_se 3: ( __=0.2 and o_r,=2 rads/sec, and 0.04 sec. time-delay unmodeled dynamics )

GCtrue(S) = 4 ( s / 0.8 + 1 ) o e-S(0.04)

s2 + 0.8 s + 4 , (9.2.20)
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whosezero-orderhold equivalentfor thesamplingperiodT---_/25sec.is givenby:

Case 3: ( __---0.2 _nd O_n=2 rads/sec, and 0.04 sec. time-delay unmodeled dynamics )

Gtrue(Z) = 0.4262(i z2 - 0.18581 z - 0.18068

z ( z2 - 1.84458 z + 0.90436 ) (9.2.21)

For Case 4, we use 4=0.8 and O_n=l rad/sec, in the nominal model of Eqn. (9.2.1) and use

the same second-order unmodeled dynamics that were used in Case 2 above.

Case 4, ( __---0.8 and C0n=l rad/sec, and second-order unmodeled dynamic_ )

GCtrue(S) = ( s / 1.6 + 1 ) o 2500

s2+ 1.6s+ 1 s2 + 30 s +2500 (9.2.22)

whose zero-order hold equivalent for the sampling period T---'x/25 sec. is given by:

Case 4; ( __---0.8 and O_n=l rad/sec, and second-order unmodeled dynamics )

Gtrue(Z) _ _3_2 + 0.014760 z - 0.0011052

z4 - 2.09462 z3 + 1.36583 z2 - 0.27961 z + 0.018855 (9.2.23)
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9.2.5 Satisfaction of the Robust Estimator Plant Assumptions

In this subsection, we will discuss the satisfaction of the various plant assumptions of

Chapter 3. The assumptions ADI.I-I.2 of Subsection 3.6 are satisfied by the results of

Subsection 9.2.1. Further, since the continuous-time nominal model is stable for all parameter

variations in O c, for our example, and since the unmodeled dynamics are stable, we conclude that

the true discrete-time system is stable and, hence, assumption AD1.5 is satisfied. We must still

find the bounding functions of assumptions AD1.3-4, and AD1.6-7.

Satisfying Assumption AD1.3: Finding AuL__toT_

The bounding techniques of Subsection 3.3.2, specifically Eqn. (3.3.17), could be used to

bounding function Au(ejtoT ) from the continuous-time bounding functionfind the discrete-time

ACu(jto). However, the resulting bounding function can be conservative and it requires much work

to compute the various supremums. In practice, the approximation of Eqn. (3.3.19) is useful. We

choose to not use this equation since it is not a guaranteed bound. Instead, we will consider some

specific cases so that we can find a rigorous bound. We will find that for the cases considered, the

approximation of Eqn. (3.3.19) turns out to be rigorously true. In the following development, we

will use Cases 2-4, which were described in Subsection 9.2.4, to find the discrete-time bounding

function Au(eJtoT ). In Figure 9.11, we show 18Cu(jto)l for the second-order unmodeled dynamics

and 15u(ejtoT)l for both Cases 2 and 4. We see from this figure that 18u(eJtoT)l _- 18Cu(jto)l for both

Cases 2 and 4. In Figure 9.12, we show 18Cu(jto)l for the time-delay unmodeled dynamics and

15u(eJtoT)l for Case 3. Again, we see from this figure that 18u(eJtoT)l -- 15Cufjto)l for the time-delay

unmodeled dynamics. For these three cases, the continuous-time bounding function of Eqn.

(9.2.12) in the frequency range 0 to tos/2 can be used as the discrete-time bounding function for

Cases 2-4. That is, we will use the bounding function,

Au(eJtoT ) = t0 / 25, for 0 < to < 25 rads/sec. (9.2.24)

in the following work. While we can only guarantee that the above bounding function is valid for
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Cases2-4,which is all of thecasesthatwewill besimulating,it is likely that thisbounding

functionalsoholdsfor all variationsof thecontinuous-timeparametersin O c. We base this

statement on the fact that we have used, in a sense, the most different nominal models in O c that we

could have. It seems likely that all other parameter variations in O c will yield bounding functions

that lie between the bounding functions resulting from the fast and slow nominal model cases, or at

least not greatly differ from this range.

Satisfying Assumption AD1.4: Finding Vuf__°_T _

The bounding techniques of Subsection 3.3.3, specifically Eqn. (3.3.25), could be used to

find a discrete-time bounding function Vu(ejc°T ) from the continuous-time bounding functions

ACu(jCo) and VCu(jCo). However, the resulting bounding function can be very conservative and it

requires a great deal of work to compute. In practice, the approximation of Eqn. (3.3.23) is useful.

We choose to not use this equation since it is not a guaranteed bound. Instead, as in the case of

_u(eJ_T), we will consider some specific cases so that we can find a rigorous bound. We will

again use Cases 2-4 to find the discrete-time bounding function Vu(eJC°T). In Figure 9.13, we

show IdSCu(jO3)/do_l for the second-order unmodeled dynamics and IdSu(eJC°T)/do_l for both Cases 2

and 4. We see that IdSu(_J_°T)/do_l -_ IdSCu(jCo)/do_l for both Cases 2 and 4. Similarly, in Figure

9.14, we show IdSCu(j_)/do_l for the time-delay unmodeled dynamics and IdSu(eJ°_T)/do31 for Case

3. Again, we see that IdSu(eJC°T)/dcol _ IdSCufjCo)/dcol. The actual IdSu(eJC°T)/d¢.ol for Cases 2-4 is

always less than about 0.04. We choose to use the bound,

Vu(eJ°_T) -- 0.05, for 0 < co < 25 rads/sec. (9.2.25)

in what follows. As was the case for _tu(eJ°3T), we can only guarantee that the bounding function

of Eqn. (9.2.25) is valid for Cases 2-4; however, it is again likely that this bounding function also

holds for all variations of the continuous-time parameters in ®c.
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Satisfying Assumption AD1,6: Finding a Bounding Function on Igtrue[n]l

We again appeal to Cases 1-4 to satisfy assumption AD1.6, that is, to find a bounding

function on Igtrue[n]l. We will bound Igtrue[n]l using a first-order system with a discrete-time pole

of 0.95098, which is the slowest possible pole of gtrue[n] as was discussed in Subsection 9.2.3.

We use Cases 1-4 to find the gain of the first-order bounding function. Figures 9.15, 9.16 and

9.17 show the impulse responses of the true discrete-time plant gtrue[n] for Cases 2, 3 and 4,

respectively, where the impulse responses of the appropriate nominal plants g[n], that is, the plants

without unmodeled dynamics, are also superimposed on each graph. For example, the impulse

response of the plant of Case 1, which is shown as a solid line in Figure 9.15, is the impulse

response of the nominal plant of Case 2. From Figures 9.15-17 we choose the gain g of the

bounding function on Igtrue[n]l as follows:

igtme[n] I_< gtme[n] = g pn, for n _> 1, (9.2.26)

where

g = 0.75 and p = 0.95098 (9.2.27)

Satisfying Assumption AD1.7: Finding a Boonding Function on Ihgs[n,0]!

As for assumption AD1.6, we will appeal to Cases 2-4 to satisfy assumption AD1.7, which

is the assumption of a bounding function on the impulse response of the additive plant error, that

is, the error between the true plant and the nominal model. First, we recall the definition of Eqn.

(4.4.7).

hg_[n,0] = g[n,0] * _u[n] = gtrue[n] - g[n,0] (9.2.28)

From our earlier work concerning Igtme[n]l and, hence, Ig[n,0]l, we know that the envelope of

IhgS[n,0]l is bounded by a first-order system with a discrete-time pole of 0.95098. To find the

gain of the fin'st-order system, the actual impulse response hgs[n,0 ] was computed for Cases 2-4.

From these results we choose the gain 'a' of the bounding function on Ihg_[n]l as follows:

Ihgs[n,0]l < _gS[n] = a b n, for n > 1, (9.2.29)
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where

a- 0.25 and b = 0.95098 (9.2.30)

We have presented this bounding function for completeness. In the general method that was

described in Subsection 4.4.2, we use this bounding function hgs[n] to find a bounding function

on Ihu[n]l. However, in the development of this chapter, we will not actually use this result, since

later, in Subsection 9.3.1, we use Cases 2-4 to find the required bounding function on Ihu[n]l

directly. The bounding function that is found in this way is less conservative than the bounding

function yielded by the general method of Subsection 4.4.2. Later, in Subsection 9.3.1, this will

enable us to find a tighter bound on the remainder term of Eqn. (9.3.16).
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Figure 9.15: Discrete-time Impulse Responses, for Case 2.

( gin] for Case 2 - , gtrue[n] for Case 2 = .... )

In this figure, we can only see differences between the two impulse reponses during the first few

sample times.
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9.2.6 Description of the Disturbance

In this subsection, we will describe the disturbance that corrupts the output of the plant.

Since the simulations will be implemented in discrete-time, we will work entirely with a

discrete-time disturbance signal. We choose a disturbance that has most of its energy in the

low-frequency range. We make this choice so that there is some hope of identifying the plant at

frequencies beyond the open-loop bandwidth of the plant. In the frequency range above where the

plant transfer function rolls-off, we need a high signal-to-noise ratio in order to find a useful bound

on the additive frequency-domain estirrmtion error. Said another way, in order to reduce the

multiplicative uncertainty to unity at some frequency, we must have a noise-to-signal ratio,

DN(Oak)/UN(_k), at that frequency that is roughly of the same order of magnitude as the plant

transfer function (see Eqn. (5.2.17)). We produce the low-frequency disturbance by using a

low-pass filter which has discrete-time poles that correspond to the continuous-time poles of a

second-order system with _=0.70711 and tan=2 rads/sec. Thus, the disturbance filter has a

bandwidth that is greater than or equal to the bandwidth of the nominal plant model in which _n is

between i and 2 rads/sec.

Figure 9.18 shows how the disturbance signal will be produced. The discrete-time

disturbance signal will be generated by using a pseudo-random signal that is uncorrelated in time

and that has a gaussian probability distribution with zero mean and a standard deviation of

0.75 • dfactor, where dfactor denotes the disturbance scaling factor. This pseudo-random signal

will be passed through the low-pass filter,

Fd(z) = 0.052881 z2

z2 -1.64799 z + 0.70087 (9.2.31)

which we have chosen to be the same as the input/output filter F(z) of Subsection 9.2.3. The actual

disturbance signal d[n] is then generated by passing the output of this filter through-a saturation

function to guarantee that Id[n]l < dfactor. This disturbance signal is shown in Figure 9.19 for

dfactor=l. Since the disturbance filter Fd(Z) has roughly the same bandwidth as the partially

known plant Gtrue(Z), we can view the disturbance as a wideband process noise or a wideband

input noise to the plant.
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Figure 9.18: Disturbance Signal Generation.

9.2.7 Satisfaction of the Robust Estimator Disturbance Assumptions

In this subsection, we will discuss the satisfaction of the disturbance assumptions of Section

3.6. Since we are starting with a discrete-time disturbance to perform our simulations, we do not

require.the methods of Section 3.5. For the disturbance of Subsection 9.2.6, we are assured that

assumption AD2.1 is satisfied by construction, since

Id[n]l < dma x = dfactor , (9.2.32)

where again dfactor is the disturbance sealing factor. The bounding functions of assumption

AD2.2 are found empirically by computing the actual DFTs of d[n] for very large samples, that is,

for at least as long as the longest of our simulations. For example, the bound/SN(t.Ok) at a specific

frequency _k is chosen as the maximum value of IDNn(O_k)l that is empirically observed for all time

indices n that are less than 2500. The bounding function "I_N(O_) for N=Nf=1000 that results

from this procedure is shown in Figure 9.20.

To find the family of bounding functions, DN+n(0_k), corresponding to n=0 to N-2, we

empirically compute, at each time index n, the maximum value of the DFT over frequency of the

unfiltered disturbance, that is, the disturbance before it is passed through the low-pass filter Fd(z ).

These values for n=0 to N-2 are then made to be nonincreasing. At a given time index n, the

bounding function DN+n(o_) is generated by scaling the magnitude of the frequency response of

the low-pass filter Fd(Z ) by the maximum value of the DFT over frequency, at time index n, of the

unfiltered disturbance. This complicated procedure is not of major importance but it is required, if

the robust estimator is to yield useful information during the first N-1 time samples of the

simulation when it is starting up.
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Chapter 9 Page 222

9.2.8 Description of the Input/Reference Signal

In this brief subsection, we describe the chirp-like signals that will be used as the plant input

signal in the open-loop simulations and as the reference signal in the closed-loop simulations. In

the open-loop simulations, the plant input signal u[n] will be generated as follows

uD] = +1, if sin( p • (n modulo Nf) 2 ) > 0 and n > 0,

-1, if sin( p • (n modulo Nf) 2 ) < 0 and n > 0,

0, if n<0.

(9.2.33)

where Nf=1000 and where

9 = x / (2 Nf) = x / 2000 = 0.0015708 (9.2.34)

This signal is shown in Figure 9.21 for time indices n=0 to 250 (31.42 secs.). At the time indices

just" before n=1000 (125.66 sees.), u[n] oscillates between -1 and +1 changing every sample time.

Thus, just before n=1000 the input signal oscillates with frequency _s/2. The magnitude of the

DFT of the input signal, IUNn(0._k)l, is shown in Figure 9.22 for N=Nf=1000 and n=N-1=999.

We make several observations concerning this signal. First, since u[n] is periodic with

period Nf, we find that UNfn(0.,k)= UNfn-P(o._k) for p=l,..,M-1 when n > Nf-I+M-1. This means

that the frequency-domain bounding method can work well since ENfn(C0k) in Eqn. (5.2.4)

reduces to Ere m for n > Nf-I+M-1. Secondly, we observe that u[n] has energy at all frequencies,

as can be seen in Figure 9.22. In the open-loop simulations, we will see that u[n] is rich enough

for the robust estimator to field useful information. We also note that u[n] has energy at high

frequencies that will excite the unmodeled dynamics. So this input signal will exercise the part of

the time-domain bounding mechanism that bounds the effect of high-frequency signals interacting

with the unmodeled dynamics. Lastly, we observe from Eqn. (9.2.33) that assumption AD3.1 of

Section 3.6 is satisfied as follows for the open-loop simulations.

lu[n]l < Urea x = 1, Vn. (9.2.35)

The reference signal r[n] that will be used in the closed-loop simulations will be a scaled version of

the signal given by Eqn. (9.2.33). The reference signal will be discussed further in Subsection

9.6.2.
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9.2.9 Projecting the Parameter Vector Estimate onto the Parameter Space O

In this subsection, we will describe a feature that will be used in both the time-domain and

the frequency-domain parameter estimators. This feature is necessary since both of our parameter

estimators estimate the three discrete-time parameters, al, a2 and b0, which depend on only two

continuous-time parameters, _ and con. Note that the fourth discrete-time parameter, b 1, is a linear

function of the other three discrete-time parameters as is shown in Eqn. (9.2.8). The point is that

our parameter estimators do not include the nonlinear relationships of Eqns. (9.2.5-7) and thus they

can yield estimates that are not in the set O. However, we know that the estimate of the parameter

vector should be in the set O, since the true parameter vector is, that is, 00 _ ®. To eliminate this

discrepancy, we take the raw result of the parameter estimator and project it onto the set O. To find

this set we plot the discrete-time plant parameters al, a2 and b 0 for the 101 grid points discussed in

Subsection 9.2.1. Since these three parameters vary with only two variables, _ and c0n, the set ®

is a 2-dimensional surface in R 3. The 101 grid points are shown in Figure 9.23. We also show,

for perspective, a prism that contains O. To project the raw parameter vector estimate onto the set

O we will choose the grid point in O that is closest to the parameter vector estimate in the sense of

the following measure of distance,

Distance = _/[ (al* - al) / Aa 1 ]2 + [ (a,2*. a2) / Aa'2 ]2 + [ (b0* _ i_0) / Ab 0 ]2 (9.2.36)

where the 'starred' quantifies represent the elements of the parameter vector at a grid point and

Aa 1 = 0.26501, Aa 2 = 0.23546 and Ab 0 = 0.54354 (9.2.37)

This measure of distance normalized the individual parameter distances by the maximum variation

of that parameter over the 101 grid points. This is a simple first-order correction to compensate for

the fact that some parameters vary more than others.
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9.3 Open.loop Simulations of the Time-domain Parameter Estimator

In this section, we will present our simulation results of the dead-zone based, time-domain

parameter estimator of Chapter 4. Specifically, we will simulate the time-domain parameter

estimator in three situations: 1) an ideal case, 2) an unmodeled dynamics only case, and 3) a

disturbance only case. Later, in Section 9.5, we will simulate the robust estimator that uses the

time-domain parameter estimator, in the presence of "both" unmodeled dynamics and a disturbance.

This simulation will be a logical follow-on to the simulations of the present section, in which we

examine the "individual" effects of unmodeled dynamics and a disturbance. In Chapter 8, we

simulated the time-domain bounding mechanism that is used in the robustified time-domain

parameter estimator that we study in this section. Recall that the time-domain parameter estimator is

one of the two ways that we can generate parameters for the nominal model.

The main purposes of the following simulations are: 1) to see how tight the time-domain

bounds on the various equation error signals are, and 2) to see how the individual effects of

unmodeled dynamics and a disturbance degrade the performance of the time-domain parameter

estimator relative to the ideal case. One of the major conclusions of this section, is that the

dead-zone based time-domain parameter estimator performs poorly in the presence of the relatively

mild case of unmodeled dynamics that is used here. This is discussed further in the conclusions.

Before we present the actual simluation results, we must complete the preparations for the

time-domain parameter estimator.

9.3.1 Preparation for the Time-domain Parameter Estimator

In this subsection, we will complete the preparations and a priori calculations for the

time-domain parameter estimator of Chapter 4. Specifically, we will compute the various

frequency and time domain bounding functions that are required by the time-domain parameter

estimator. In addition, in this subsection we modify the pamrneter estimator to include a priori

knowledge of the continuous-time plant.

Off-line Computation of Hd(eJ°"k T)

Recall that Hd(eJ°_k T) is the magnitude bounding function on the transfer function from the

disturbance d[n] to the equation error e 1In]. Using Eqns. (3.6.4) and (9.2.4), we find that

A(z,0) = 1 - a 1 z"1 - _ z-2 (9.3.1)
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andfromEqns.(4.3.3)and(9.2.13)

Hd(Z,0)= A(z,0) F(z) = 0.052881 ( z2- alz- a2__

z2 -1.64799 z + 0.70087 (9.3.2)

where a I and a2 are parameters in the vector 0 that vary according to Eqns. (9.2.5-6). The

magnitude bounding function on Hd(e_°)kT), which was defined in Eqn. (4.3.5), was computed

by finding the maximum magnitude of IHd(eJ°kT,0)l at each frequency over the 101 point

parameter grid that was described in Subsection 9.2.1. Thus, we had to compute (N/2)+1=501

maximums, each being a maximum over 101 points. The bounding function Hd(eJ°'_k T) is shown

in Figure 9.24. Noting that the vertical scale in this figure doesn't begin at zero, we see that the

bounding function doesn't change much with frequency, since it is always between 0.53 and 0.60.

Thus, the error signal e3[n ] will be approximately a scaled version of the disturbance din].
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Figure 9.24: Frequency-domain Bounding Function Hd(eJt-°kT).
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Off-line Computation of the Impulse Response Bounding Function hd[n]

m

Recall that hd[n] is the bounding function on the impulse response from the disturbance d[n]

to the equation error el[n ]. From Eqn. (9.3.2) we find that the impulse response hal[n,0], which

corresponds to the transfer function Hd(z,0 ), is given by

hd[n,0] = 0.052881 { 5In] + 6.75685 [ ( 1.64799 - a 1 ) (0.83718) n sin( 0.17772 n ) U.l[n-1 ]

+ (-0.70087 - a2 ) (0.83718)(n-l) sin(0.17772 (n-l)) U.l[n-2 ] ] } (9.3.3)

where _[n] and U.l[n-1] denote the unit impulse and unit step, respectively. For the parameter

variations described in Subsection 9.2.1, it can be shown that

a I _ [1.61716, 1.88217] and a2 _ [-0.90436, -0.66890]. (9.3.4)

Using Eqns. (9.3.3-4) we f'md that

Ihd[n,0]l < 0.052881 _[n] + 0.17052 (0.83718) n u_l[n-1 ]. (9.3.5)

This bounding function is not very tight so we will use some of the cases that were described in

Subsection 9.2.4 to f'md a tighter bounding function. Consider the two cases:

Case A; _ = 0.2 and ton = 2 rads/sec. =_ a 1 = 1.84458 and a2 = -0.90436 (9.3.6)

Case B: _ -- 0.8 and ton - 1 rad/sec. => a 1 = 1.80358 and a,2 - -0.81786 (9.3.7)

Case A corresponds to the nominal model parameters for Cases 1-3 of Subsection 9.2.1 and Case

B corresponds to the nominal model parameters for Case 4 of Subsection 9.2.1. In Figure 9.25,

we show hd[n,0 ] for Cases A and B, along with the empirically chosen bounding function hd[n ]

where

= gpn, forn>0, (9.3.8)Ihd[n,0]l < hd[n]

and

g = 0.06 and p = 0.83718 (9.3.9)

Thus, this bounding function is valid for all of the cases that we will be simulating. It is about a

factor of 3 smaller than the bounding function that is computed via Eqn. (9.3.5).
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Figure 9.25: Impulse Response hd[n,0] for Cases A and B, and Bounding Function hd[n].

( hd[n] and -hd[n] - ., hd[n,0] for Case A = .... , hd[n,0] for Case B = ........ )

m

Off-line Computation of the Error Bound e3[_n.]

I

The constant e3 that bounds the steady-state effect of the disturbance in the error signal el[n]

is computed using Eqn. (4.3.13). To compute this bound we use the bounding function DN(COk)

for N=Nt=20, which can be empirically generated as was described in Subsection 9.2.7. Eqn.

(4.3.13) yields

e3 = 0.130760 • dfactor (9.3.10)

We can bound the remainder term of Eqn. (4.3.13) using Eqns. (4.3.12), (9.2.32) and (9.3.8-9),

2 dma x _ hd[P] < 2. dfactor • 0.06 (0.83718) 20 / (1- 0.83718) = 0.021079. dfactor

P=Nt (9.3.11)

So, the remainder term is about a sixth of the value of the steady-state bound, itself.

as shown.
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Thetime-varyingbounde3[n] that is used during the start-up period from n=0 to Nt-2 is

computed off-line using Eqn. (4.3.11). It can then be stored for use on-line. To compute this

time-varying bound we use the family of bounding functions, DN+n(t.Ok), corresponding to n=0 to

Nt-2, which can be empirically generated as was described in Subsection 9.2.7.

Off-line Computation of the Bounding Function HuL__°_kT_I

Recall that Hu(e!°_k T) is the magnitude bounding function on the transfer function from the

input u[n] to the equation error el[n ]. This bounding function is used to compute a bound on the

effect of the unmodeled dynamics on the equation error. Using Eqns. (3.6.3) and (9.2.4), we find

that

B(z,0) -- b 0 z"1 + b 1 z -2 (9.3.12)

and from Eqns. (4.4.1) and (9.2.13),

Hu(z,0) = B(z,0) F(z) 8u(Z ) -- 0.052881 (bg.I.._l_) - _u(Z).

z2 -1.64799 z + 0.70087 (9.3.13)

D

where b 0 and b 1 are parameters in the vector 0 that vary according to Eqns. (9.2.7-8). As for H d,

we compute the magnitude bounding function on Hu(eJC°kT), which was defined in Eqn. (4.4.3),

by finding the maximum magnitude of IHu(eJ°_T,0)l at each frequency over the 101 point

parameter grid described in Subsection 9.2.1. The bounding function Hu(eJt'°k T) is shown in

Figure 9.26.
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Figure 9.26: Frequency-domain Bounding Function Hu(eJC°kT).

Off-lint Computation of the Impulse Response Bounding Function h-u[nl

m

Recall that hu[n] is the bounding function on the impulse response from the input u[n] to the

equation error el[n]. This bounding function is used to compute a bound on the effect of the

unmodeled dynamics on the equation error. We must find a magnitude bound on the impulse

response hu[n,0 ] corresponding to the transfer function Hu(z,0). Instead of using the results of

Subsection 4.4.2, which will yield a conservative bound, we will again make use of the cases that

were described in Subsection 9.2.4. In Figure 9.27, we show hu[n,0] for Cases 2-4, along with

the empirically chosen bounding function h-u[n] where

ihu[n,0] I < hu[n ] = g pn, for n > 0,

and

g -- 0.015 and p = 0.83718

This bounding function is valid for all of the cases that we will be simulating.

(9.3.14)

(9.3.15)
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Figure 9.27: Impulse Response hu[n,0 ] for Cases 2-4, and Bounding Function hu[n ].
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hu[n] for Case 4 -- ........ )

m

Preparation for the On-line Computation of the Time-varying Error Bound e2I..n.]

I

The time-varying bounding function e2[n] that bounds the effect of the unstructured

uncertainty in the error signal el[n], is computed on-line using Eqn. (4.4.23). The bounding

function of Figure 9.26 and the magnitude of the input signal DFT, UNn(t.Ok), which is computed

on-line, are used to compute the time-varying bound. We can bound the remainder term of Eqn.

(4.4.23) using Eqn. (9.3.14-15), the facts that Umax=l and Nt=20, and the results of Appendix C

as shown•

OO

2 Uma x _ h-u[P] < 2.0.015 (0.83718) 20 / (1- 0.83718) = 0.0052698

p=N t

This remainder term is small compared to the values of the time-varying bound e2[n ] that we wili

(9.3.16)
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observe in the simulations. The on-line computational requirements for computing e2[n] are quite

small compared to the requirements of the frequency-domain bounding part of the robust estimator.

With reference to Eqn. (4.4.23), we only have to perform about Nt/2--5 multiplications and

additions at each sample time. Of course, we also must compute the Nt-point DFTs of the input

and output signals; however, these computations are easily implemented using the recursion of

Eqn. (2.1.11).

Modification of the Time-domain Parameter Estimator Based on a priori Information

The time-domain parameter estimator that was described in Chapter 4 could be used to find

estimates of the four parameters, a 1, a2, b 0 and b 1. However, from our problem description of

Subsection 9.2.1, we know that the D.C. gain of the nominal plant GO(s,0 c) is unity for all 0 c in

O c. Further, since the high-frequency unmodeled dynamics are assumed to have no effect on the

D.C. gain of the plant in our problem, we see that the D.C. gains of the continuous and

discrete-time plants are unity. This means that the four parameters of the discrete-time plant are not

independent. Using Eqn. (9.2.4) and the fact that G(z)=l for z=l, we know that

b I = 1 - a 1 - a2 - b 0 (9.3.17)

as was previously noted in Eqn. (9.2.8). This a priori known constraint allows us to use a

parameter estimator that only estimates the three parameters, a 1, a2 and b 0. We will now derive a

modified form of the linear regression equation that describes the plant by incorporating this

constraint. Using Eqns. (4.2.17) and (9.3.17), we see that

yf[n] = @f[n-1]T00 + el[n] = a 1 yf[n-1] + a2 yf[n-2] + b 0 uf[n-1] + b 1 uf[n-2] + el[n ]

= a 1 ( yf[n-1] - uf[n-2] ) + a2 ( yf[n-2] - uf[n-2] ) + b 0 ( uf[n-1] - uf[n-2] ) + uf[n-2] + el[n].

(9.3.18)

Rewriting this equation yields

( yf[n] - uf[n-2] ) =

a 1 ( yf[n-1] - uf[n-2] ) + a2 ( yf[n-2] - uf[n-2] ) + b 0 ( uf[n-1] - uf[n-2] ) + el[n ] (9.3.19)

which can be expressed as

yfm[n] = Cfm[n-1]T00m + el[n] (9.3.20)

where
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yfm[n] = yf[n] - uf[n-2]

Ofm[n-1] = [ (yf[n-1] - uf[n-2]) (yf[n-2] - uf[n-2]) (uf[n-1] - uf[n-2]) ]T

00 m =[al a2 b0]T

and where the subscript 'm' stands for 'modified' form of the parameter estimator.

(9.3.21)

(9.3.22)

(9.3.23)

In the

following simulations the modified linear regression of Eqns. (9.3.20-23) will be used. For the

sake of clarity we will drop the subscript 'm' notation throughout the discussion of the following

simulations. That is, in the various figures the modified output of Eqn. (9.3.21) and the modified

parameter vector of Eqn. (9.3.23) will be referred to as yf[n] and 00, respectively.

Choice of Algorithm Constants for the Time-domain Parameter E_timator

In the dead-zone based, time-domain parameter estimator of Chapter 4, there are several

constants that must be chosen. With reference to the algorithm of Section 4.5, we choose 0_=0.50

and, hence, 9=1.4142. The constant o_multiplies the additive update to the parameter vector

estimate so we call it the adaptation gain. The constant 13multiplies the dead-zone width. The

larger 13is, the less often the parameter estimates are updated. As discussed in Remark i of Section

4.5, we choose these values as a result of a trade-off between the adaptation gain o_ and the size of

the dead-zone as controlled by the parameter 9. In the regularized constant trace modification to the

least-squares algorithm, which is described in Subsection 4.5.3, we choose the constants c0=10

and c 1=30.

Subsection Summary

In this preparatory subsection, we have developed all of the necessary bounding functions

and computed all of the necessary quantities for use of the robustified time-domain parameter

estimator of Chapter 4. In the following subsections we will use this information to simulate the

parameter estimator.



Chapter9 Page235

9.3,2 Simulations of the Time-domain Parameter Estimator

In this subsection, we will simulate the time-domain parameter estimator of Chapter 4 using

the modification discussed in Subsection 4.5.3. Thus, we simulate the robustified least-squares

parameter estimator with the regularized constant trace modification. The chirp-like input signal

u[n] of Subsection 9.2.8 will be used in all of the simulations in this subsection. We shall perform

simulations of the time-domain parameter estimator for three cases: 1) ideal case, with no

disturbance or unmodeled dynamics, 2) unmodeled dynamics only case, with no disturbance, and

3) disturbance only case, with no unmodeled dynamics. The case of both unmodeled dynamics

and a disturbance will be simulated later, in Subsection 9.5.2, when we consider the robust

estimator as a whole.

Simulation 9.3.1: Ideal Case, No Disturbance, No Unmodeled Dynamics

For this simulation we will use Case i of Subsection 9.2.4, and will not introduce any

disturbance. This situation ots no unmodeled dynamics and no unmeasurable disturbance provides

us with a baseline by which to judge the performance and behavior of the later simulations which

will include the effects of unmodeled dynamics and an unmeasurable disturbance. In this ideal

case, we set-up the parameter estimator using the knowledge that the error signal el[n] is always

zero. Thus, the dead-zone mechanism is not used in the algorithm for this simulation.

For clarity of presentation, we define the individual parameter errors. Keeping with the

notation of our definition of 0[n] in Eqn. (4.5.4), we define

'_l[n ] -- al[n ] - a 1

~a2[n] = n]- a2

bo[n] = b0[n] - b 0

where the 'hatted' variables represent the estimates. We now present our results.

In Figure 9.28, we show the input signal u[n] and the output signal y[n]. We note the large

amplitude of the plant output when the input signal excites the resonance at 2 rads/sec. Beyond 15

secs., as the input signal frequency increases, the plant output response decreases in size, as

expected. For the initial parameter estimates we used the values that correspond to the choice of

(9.3.24)

(9.3.25)

(9.3.26)

4=0.8 and O_n=l rad/sec. These values are quite different from those of the true simulation plant,

which are _=0.2 and C0n=2 rads/sec. In Figure 9.29 we show the parameter errors as defined
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above.Forreference,we list thetruevalues, initial estimates and initial errors of the parameters.

In addition, we show the parameter errors at n=200 (25.13 sees.) and n=2500 (314.16 secs.).

Table 9.1: Parameter Estimates of the Time-domain Algorithm for the Ideal Case.

t On t 6rol i 0'!Ol I 0"'[2001 I 0'125001
-.--al _ 1.844._8 i 1.80358 _ -0.04100 s 0.oo488 _ 0.0

.a2__ I -0.90436 I -0.81786 I 0.08650 I -0.00257 I 0.0
b__.._b__._..I 0.62189 I 0.07834 I -0.54355 I -0.00234 I 0.0

From Figure 9.29, we see that the parameter errors almost reach zero in 25 seconds. The

simulation was run for a total of 314 seconds at which time the parameters had converged to zero,

to within the numerical accuracy of the simulation. This simulation shows us how well the

parameter estimator works for the ideal case of no disturbance and no unmodeled dyn_aics.
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Figure 9.28: Parameter Estimator Simulation, u[n] and y[n] for Ideal Case.

( u[n] - -, y[n] = .... )
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Figure 9.29: Parameter Errors for Ideal Case.

(al[nl = .... , g0[nl= ........)

Simulation 9.3.2: Unmodeled Dynamics Case, No Disturbance

For this simulation we will use Case 3 of Subsection 9.2.4 and will not introduce any

disturbance. That is, we use the case of time-delay unmodeled dynamics but no disturbance, so

that we can isolate the effect of the unmodeled dynamics alone. For this simulation, we set-up the

parameter estimator using the knowledge that the error signal e3[n], due to the disturbance, is

always zero. Thus, the dead-zone mechanism is used only to bound the effect of unmodeled

dynamics for this simulation. We now present our results.

The 0.04 sec. time delay has only a small effect on the plant output. The time histories of

the input signal u[n] and the output signal y[n] are almost the same as those of Figure 9.28 and for

this reason they are not shown. For the initial parameter estimates we again used the values that

correspond to the choice of _=0.8 and 03n=l rad/sec. In Figure 9.30, we show the parameter

errors. For reference, we list the true values, initial estimates and initial errors of the parameters.

In addition, we show the parameter errors at n=200 (25.13 secs.) and n=2500 (314.16 secs.).
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Table9.2:

J I )
..._._al [ 1,84_58 I 1.80358 I
___+a2m I -0.90436 I -0.81786 I
_1 0.62189 I 0.07834 I

Parameter Estimates of the Time-domain Algorithm for the Unmodeled Dynamics Case.

 'r01 I  'r2001 I  'r25001
-0.04100 I 0.01115 10.02172

0.086_0 I -0.01921 I -0.02789
-0.54355 I -0.37421 I -0.32506

Comparing Figures 9.29 and 9.30, we see that the parameter errors are quite large for the present

simulation. Later, in the simulation of the robust estimator with the time-domain parameter

estimator (see Section 9.5.2), we will see that the large estimation error for the b 0 parameter does

indeed matter in the sense that it results in large frequency-domain errors. The above table shows

that, even after a long time, the parameter estimates are still poor. We can understand this poor

performance by looking at the operation of the dead-zone mechanism.

In Figure 9.31, we show the magnitude bound el[n ] and the actual error signal el[n ] , which

is due entirely to the effects of unmodeled dynamics in this simulation. This figure reveals that the

time-domain bounding mechanism is conservative. To provide a broader view of the operation of

this time-domain bounding mechanism, we present Figure 9.32, which shows the magnitude

bound el[n] and the actual error signal ei[n ] for a duration 10 times longer than Figure 9.31. In

this figure, the dips in the magnitude bound occur just after the input signal has the same period for

at least N t time samples. In this situation, the time-domain bounding mechanism sees a pure

fundamental frequency resulting in a tight bound. In Figure 9.33, we show both the prediction

error e[n] and the threshold signal _el[n ]. The dead-zone signal aJ[n] of Subsection 4.5.2, is

shown in Figure 9.34. Comparing Figures 9.33 and 9.34, we see how the dead-zone signal is

nonzero only when the magnitude of the prediction error e[n] is larger than the threshold signal

13el[n]. Figure 9.34 shows us that the parameter estimator is turned off almost all of the time.

Since the parameters are updated for only a few short time intervals, it is not surprising that the

parameter estimator yields poor parameter estimates. This simulation reveals the poor performance

of the dead-zone based parameter estimator for even a relatively mild case of unmodeled dynamics.

It appears that the conservativeness of the time-domain bounding mechanism is a major contributor

to this poor performance.
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"" hoE( al[n] =--, a2[n] = .... , n] = ........ )
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( e 1[n] - , el [n] and - el[n] ..... )

These figures show us the conservatism of our time-domain bound on le 1[n] I, for this case.
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Figure 9.34: Dead-zone Signal _[n] for Unmodeled Dynamics Alone Case.

The dead-zone signal is nonzero only when the magnitude of the prediction error is greater than the

threshold signal.
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Simulation 9.3.3: Disturbance Case. No Unm0d¢led Dynamics

For this simulation we will use Case 1 of Subsection 9.2.4, and will introduce a

disturbance. That is, we use the case of no unmodeled dynamics, so that we can isolate the effect

of the disturbance alone. For this simulation, we set-up the parameter estimator using the

knowledge that the error signal e2[n], due to the unmodeled dynamics, is always zero. Thus, the

dead-zone mechanism is used only to bound the effect of the disturbance for this simulation. The

disturbance that was described in Subsection 9.2.6 will be used in this simulation with a scaling

factor of dfactor=0.1. This is a small disturbance signal as can be seen from Figure 9.19, since for

the first 25 secs. the disturbance magnitude doesn't even exceed 0.06, including the scaling factor.

Recall that the input signal u[n] has unity magnitude. We now present our results.

The disturbance has only a small effect on the plant output, so the time histories of the input

signal u[n] and the output signal y[n] are again almost the same as those of Figure 9.28. For the

initial parameter estimates we again used the values that correspond to the choice of _--0.8 and

C0n=l rad/sec. In Figure 9.35, weshow the parameter errors. For reference, we list the true

values, initial estimates and initial errors of the parameters. In addition, we show the parameter

errors,at n=200 (25.13 sees.) and n=2500 (314.16 sees.).

Table 9.3: Parameter Estimates of the Time-domain Algorithm for the Disturbance Case.

i i  [01 i 0 [01 i  r2001 I  r25001
....._a 1 I 1.84zl58 I 1.80358 I -0.04100 I -0.02261 10.00681
_._._____ I -0.90436 I -0.81786 I 0.08650 I 0,00255 I -0.00822

I 0.62189 I 0.07834 I -0.54355 I -0.16399 I -0.09797

Comparing Figures 9.29 and 9.35, we see that the parameter error is small for each of the

parameters a 1 and a2, but is still relatively large for b 0. The above table shows that even after a

long time, the parameter estimate of b 0 is still not good. To gain insight, we investigate the

operation of the dead-zone mechanism.

In Figure 9.36, we show the magnitude bound el[n ] and the actual error signal el[n ] , which

is due entirely to the effects of the disturbance in this simulation. This figure reveals that the

disturbance bound introduces considerable conservatism for this simulation. In Figure 9.37, we

show both the prediction error e[n] and the threshold signal _ el[n ]. The dead-zone signal _[n] is

shown in Figure 9.38. Comparing Figures 9.37 and 9.38, we again see how the dead-zone signal

is nonzero only when the magnitude of the prediction error e[n] is larger than the threshold signal
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m

13el[n]. Figure 9.38 shows us that the parameter estimator is turned off for much of the time but

not nearly as much as in the case of the previous simulation. Since the bound el[n] is overly

conservative, the dead-zone disables the parameter estimator when there is still useful information

in the input/output data. This simulation shows that the parameter estimator can perform marginally

well when the disturbance is small.
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( el[n] - , el[n] and -el[n] = .... )

This figure show us the conservatism of our time-domain bound on le 1[n] I, for this case.
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The dead-zone signal is nonzero only when the magnitude of the prediction error is greater than the

threshold signal.
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9.3.3 Conclusion

In this section, we have studied the properties of the dead-zone based, time-domain

parameter estimator, through the use of several simulations. We have examined the individual

effects of unmodeled dynamics and a disturbance on the time-domain parameter estimator. Later,

in the robust estimator simulation of Subsection 9.5.2, we will simulate the time-domain parameter

estimator in the presence of both unmodeled dynamics and a disturbance. The understanding that

was gained in the present section will help us to understand this later simulation of the complete

robust estimator using the time-domain parameter estimator. We summarize our conclusions

concerning the simulations of the present section.

1) The time-domain parameter estimator is frequently 'turned-off for even a relatively mild

case of unmodeled dynamics, thus resulting in poor parameter estimates.

2) The time-domain bounding mechanism can be very conservative in the case of a

pseudo-random type of disturbance. Thus, the resulting disturbance bound will be

conservative and will result in degraded parameter estimates.

The most important of these conclusions is the one concerning the poor performance of the

dead-zone based parameter estimator for mild cases of unmodeled dynamics. It is the author's

opinion that there exist some inherent difficulties with using a dead-zone approach to guard against

the effects of unmodeled dynamics. Since the effects of the unmodeled dynamics vary greatly with

frequency, it seems more appropriate to try to weed out their effects using a frequency-domain

approach. To further justify this viewpoint, we present the following thought experiment.

Consider a disturbance-free situation in which the plant input signal contains some small

sinusoidal component that produces some small sinusoidal component in the plant output signal.

We assume that there are other, larger components of the input signal that drive the time-domain

bounding mechanism of the parameter estimator, thus resulting in some large error bound. The

large error bound will disable the parameter estimator. That is, the time-domain contribution of the

small sinusoid is smaller than the time-domain signal due to the interaction of the total input signal

with the unmodeled dynamics. However, a frequency transform of the data can still provide useful

information at the frequency of the small sinusoidal component. Thus, from the point of view of

the dead-zone based parameter estimator there is no useful information in the input/output data, but

from a frequency-domain viewpoint there is. These arguments help justify our choice of the

frequency-domain parameter estimator of Section 5.4 over the dead-zone based parameter estimator

that was simulated in this chapter. Later, our simulation results for the frequency-domain

parameter estimator will further justify this choice.

As a f'mal note we emphasize that the dead-zone based parameter estimator is only one type

of time-domain parameter estimator. We do not mean to imply that time-domain techniques are



Chapter9 Page247

inferior to frequency-domaintechniques.We areonly sayingthatthedead-zonebasedparameter
estimatordoesn'tperformwell, in our simulations.

9.4Open-loop Simulations of the Frequency-domain Uncertainty Bounding

Method

In this section, we will simulate the frequency-domain bounding method that was developed

in Chapter 5. Specifically, we will implement the part of the robust estimator that generates the

multiplicative uncertainty bounding function. However, we will use the actual values of the

parameters in the nominal model. That is, the simulations of this section show how the robust

estimator would work if the parameter estimator always gave the true parameters. Later, this will

allow us to see how much conservatism is due to the frequency-domain bounding method itself,

and how much is due to the parameter estimator. We will see that for our choices of the DFT

length Nf and the memory length M, the frequency-domain bounding function yields a

multiplicative uncertainty bounding function that is much less than unity and, hence, is useful for

updating the control-law in a closed-loop adaptive control context. That is, we will see that the

frequency-domain bounding method performs well. Before presenting the simulation results, we

must take care of some preparations for the frequency-domain bounding method.

9.4.1 Preparation for the Frequency-domain Uncertain t3, Bounding Method

In this subsection, we will complete the preparations and a priori calculations for the

frequency-domain uncertainty bounding method of Chapter 5. Specifically, we will compute the

various frequency and time-domain bounding functions that are required by the frequency-domain

uncertainty bounding method.

Computation of the Error Bounding Function

The error bounding function of Eqn. (5.2.4) will be computed using the on-line computed

DFT of the input signal, UNn(o_k), and the bounding function on the impulse response of the true

plant, which is given by Eqns. (9.2.26-7). Recall that Eqn. (5.2.4) is the key equation that is used

to compute the frequency-domain bounding function. The remainder term of Eqn. (5.2.5) is

computed using Eqns. (9.2.26-7), the fact that Umax=l, and the results of Appendix C. Thus, the

remainder term is gl"ven by
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oO

_rem = 2 Uma x _ i g--tmeti]
i=M

-- 2 g pM (M - M p + p) / (1 - p)2. (9.4.1)

where from Eqn. (9.2.27), g=0.75 and p---0.95098. This remainder term is shown in Figure 9.39

as a function of the memory length M. In addition, we present the following table for the larger

values of M.

Table 9.4: The Remainder Term Ere m as a Function of the Memory Length M.

M
1

100

125
150
175
200
225
250
275
300

23.97108

8.25089
2.75484
0.89977
0,28901
0,09163
0.02874
0.00894
0.00276

For the open-loop simulations of this section, we use M-175 which corresponds to a remainder

term of 0.89977. As mentioned previously, this remainder term looks like a constant disturbance

over all frequencies, to the frequency-domain estimator.

Id")
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Q
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I I
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Figure 9.39: Remainder Term Ere m as a Function of the Memory Length M.
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Computation of the Interval form of the Smoothness Condition Vsu,inL_kX_k+l )

The bounding function Vsun(eJ_k T) will be computed on-line. Recall that this bounding

function is used to both smooth out sharp peaks in the raw uncertainty bounding function and to

compute the additive safety factor that guards against inter-sample variations. The methods of

Subsection 5.7.2 will be used to compute the bounding function Vsun(eit'°kT); however, to

compute the interval form of the smoothness condition Vsu,in(o_k,0_k+l ) we must use an

approximation to Eqn. (5.7.31). Since we are using a large number of frequency points in this

simulation, little error is introduced by the following approximation.

Vsu,in(t.Ok,O_'k+l) = max{Vsun(eje"kT), Vsun(ejtalk+lT)} = sup { Vsun(ej _T) }

0_ [0.,'k,0_+ 1] (9.4.2)

Sub,ection Summary_

In this preparatory subsection, we have developed all of the necessary bounding functions

and computed all of the necessary quantities for use of the frequency-domain uncertainty bounding

method of Chapter 5. In the following sections of this chapter, we will use this information to

simulate the frequency-domain bounding method.

9.4.2 Simulation of the Frequency-domain Uncertainty Bounding Method with True Parameter

Estimates

In this subsection, we will simulate the frequency-domain uncertainty bounding method of

Chapter 5 using the "true" parameters, not estimates. That is, instead of using a parameter

estimator, we use the true parameter values which we know from the start in this controlled

situation. This approach will allow us to evaluate the performance of the frequency-domain

bounding method independently of the performance of the parameter estimator. In this subsection,

we simulate the main method of Chapter 5, including the smoothing computations of Section 5.7

and the addition of the safety factor that was described in Section 5.8. We do not implement any of

the modifications with regard to the robust uncertainty bounding discussion of Subsection 5.6.3.

The input signal u[n] of Subsection 9.2.g will be used in all of the simulations in this subsection.

We shall perform simulations of the frequency-domain bounding method for two cases in this
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section: 1) idealcase,with nodisturbanceorunmodeleddynamics,and2) disturbanceonly case,
with nounmodeleddynamics.Later,in Section9.5,thecompleterobustestimatorwill be
simulated.

Simulation 9.4.1: Ideal Case, No Disturbance, No Unmodeled Dynamics

For this simulation we will use Case I of Subsection 9.2.4 and will not introduce any

disturbance. In this ideal case, we expect the frequency-domain bounding method to work very

well. With no disturbance, the only source of error with regard to our frequency-domain estimate

is the use of finite-length data. For initial values, we set the cumulative frequency-domain estimate

to the frequency response of the nominal model for _--0.8 and t.On=l rad/sec., and set the

corresponding cumulative frequency-domain bounding function to the best bounding function that

can be found using only a priori knowledge of the plant. That is, we can find some large initial

bounding function on the frequency-domain error based on our assumptions concerning the

structured and unstructured uncertainty of the plant. Note that we start the frequency-domain

bounding method with parameter values that are very far from the true values of _--0.2 and C0n=2

rads/see. We now present our results.

In this simulation, the time histories of the input signal u[n] and the output signal y[n] are the

same as those of Figure 9.28. As in Chapter 8, we will present the time histories of the

freque.ncy-domain errror and error bound, at a given frequency. In Figure 9.40, we show the time

histories of the frequency-domain error bound, Ef, Nn(O_k), and the actual error magnitude,

IEf, Nn(O._k)l, at t.Ok=2 rads/see. In Figure 9.41, we show the same quantities for O_k=20 rads/sec.

These figures show how the frequency-domain error bounding function decreases sooner for low

frequencies than for high frequencies in our example. This occurs because the input signal is a

low-frequency signal initially but then becomes an increasingly higher frequency signal for later

times. In Figures 9.40-41, there is a marked decrease in the bounds at n=999 (125.54 secs.) when

the first DFT frame of 1000 time samples is f'tlled. Since the input signal has the same period as the

length of the DFT, the bounds remain constant after time index n=Nf-l+M-l=1173, or after

147.40 sees. These results show us that the frequency-domain bounding method yields its best

results after something on the order of Nf+M sample times have passed. This gives us an idea of

how fast the bounding method learns.

In Figure 9.42, we show frequency-domain snapshots of the cumulative frequency-domain
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errorboundingfunction,Ecumf,Nn(_), andtheactualerrormagnitude, IEcumf,Nn(O._k)l, for

n--999 (125.54 sees.). In Figure 9.43, we show the same functions for n=2500 (314.16 sees.).

From Figure 9.42, we see that the both the cumulative bounding function and the error function are

still quite large at n=999. However, from Figure 9.43, we see that at n=2500, both the cumulative

bounding function and the error function are small. In fact, the actual cumulative error function is

so small that it can't be seen on the scale of Figure 9.43. A comparison of Figures 9.43 and 9.22,

which shows the DFT magnitude of the input signal, reveals the expected result that we obtain the

best estimates at the frequencies where the input signal has the most energy.

We now present the final results of the frequency-domain uncertainty bounding method, the

bounding functions Asun(eJt°k T) and Asun(d°°k T) on 18su(eJ_kT)l. In Figure 9.44, we show the

raw bounding function Asun(eJ¢°kT), which is defined by Eqn. (5.5.6), for n=2500 (3 14. 16

secs.). In Figure 9.45, we show the final bounding function A'sun(eJ°_k T) for n=2500 (3 14. 16

sees.), after the smoothing of Asun(eJt'°k T) and the addition of the safety factor, as described in

Sections 5.7-8. Comparing Figures 9.44 and 45, we see how the smoothing procedure has

removed the sharp peaks in Figure 9.44. Further, from this comparison, the addition of the safety

factor in Figure 9.45 is apparent, particularly in the frequency range from 0 to 2.5 rads/sec. These

results show us how well the frequency-domain bounding method works for the ideal case of no

disturbance and no unmodeled dynamics. The final bounding function is quite small being much

less than unity. This means that for our choice of Nf and M the frequency-domain bounding

method works very well.



Chapter9 Page252

Q

0
I
I
i

i

rid

,--, ._r_-
Z
C_.9
OZ
X"

O

,4-

Q
6

0.0

i
i
i

_!l:'l,. ,;._ iI ;'

! I I

50.0 100.0 1.50.0

TIME IN SECS.

200.0 250.0

Figure 9.40: Time History of IEf, Nn(O)k)l and F_,f,Nn(olk) for ¢Ok=2 rads/sec., and Ideal Case.

(tEf, Nn(COk)l- , ....
0

0

Figure 9.41:

I

0.0 50.0 100.0 150.0 200.0 250.0

TIME IN SECS.
m

Time History of IEf, Nn(O)k)} and Ef, Nn(O_k) for O)k=20 fads/see., and Ideal Case.

(IEf, Nn(COk)l- , E-f, Nn(Cok ) ..... )

These figures show how fast the bounding method learns at different frequencies.
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Simulation 9.4.2: Disturbance Case, No Unmodeled Dynamics

For this simulation we will use Case 1 of Subsection 9.2.4, and will introduce the

disturbance of Subsection 9.2.6 with a scaling factor of dfactor--O. 1. In this disturbance case, we

do not expect the frequency-domain bounding method to work as well as in the ideal case, in the

frequency range where the disturbance has its energy. We use the same initial values for the

frequency-domain method as in the previous simulation. We now present our results.

In this simulation, the time histories of the input signal u[n] and the output signal y[n] are

similar to those of Figure 9.28, since the disturbance is small. The time histories of the

frequency-domain error bound, Ef,Nn(tx_k), and the actual error magnitude, IEf, Nn(Oak)l, are

qualitatively similar to those of the previous simulation so we do not show them. In Figure 9.46,

we show frequency-domain snapshots of the cumulative frequency-domain error bounding

function, Ecumf,Nn(t.Ok ), and the actual error magnitude, IEcumf, Nn(COk)l, for n=2500 (314.16

secs.). Comparing Figures 9.43 and 9.46, we see that the functions are larger in the disturbance

case than in the ideal case of no disturbance, as expected. Comparing these two figures with the

disturbance DFT magnitude, which is shown in Figure 9.20 (not including the scaling factor of

0.1), we see how the disturbance corrupts the estimate primarily in the low-frequency range.

Now, for the disturbance case, we present the final results of the frequency-domain

uncertainty bounding method, the bounding functions Asun(ej°'_k T) and Ssun(e_C°k T) on

15su(eJC°kT)l. In Figure 9.47, we show the raw bounding function Asun(eJC°k T) for n=2500

(314.16 sees.). In Figure 9.48, we show the final bounding function Asun(eJt°k T) for n=2500

(314.16 sees.), after the smoothing of Asun(eJt'°k T) and the addition of the safety factor.

Comparing Figures 9.47-48, we see again how the smoothing procedure has removed the sharpest

peaks in Figure 9.47. The presence of the disturbance is most pronounced in the low frequency

range from 0 to 2.5 rads/sec. A comparison of Figures 9.45 and 9.48 reveals the degradation of

the uncertainty bounding function that is due to the presence of the disturbance. These results

show us how the disturbance affects the performance of the frequency-domain bounding method.

We note that, even in the presence of the disturbance, the final bounding function is smaller than

unity and, hence, useful.
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Figure 9.46: Frequency Snapshot of IEcumf, Nn(O_k)l and Ecumf, Nn(O>k ) for n=2500, and

Disturbance Case. (IEcurnf, Nn(O_k)l- , Ecurnf, Nn(O)k ) ..... )
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9.4.3 Conclusion

In this section, we have studied the properties of the frequency-domain uncertainty bounding

method, through the use of two simulations. We have seen that the frequency-domain bounding

method performs well. We summarize our conclusions concerning these simulations.

1) In the disturbance-free case, the frequency-domain bounding method yielded a

multiplicative uncertainty bounding function that is much less than unity and, hence, useful for

control design. This verifies that our choices of M and Nf are sufficiently large.

2) In the disturbance case, we saw how the low-frequency disturbance resulted in a larger

multiplicative uncertainty bounding function than in the disturbance-free case. This shows

how the presence of the disturbance affects the closed-loop bandwidth that is achievable using

the frequency-domain uncertainty bounding method.

These conclusions are encouraging and indicate that the frequency-domain uncertainty bounding

method holds promise. However, the robust estimator also includes a parameter estimator. The

results of this section show that, if 1) the parameter estimator yields the true parameter values and

2) the input signal is rich, such as in these simulations, then the frequency-domain bounding

method can yield a useful bounding function On the multiplicative modeling uncertainty. By useful

we mean a bounding function that is, for example, less than unity for frequencies that are lower

than the target closed-loop bandwidth. This will allow the robust adaptive control system to

increase the closed-loop bandwidth using the knowledge provided by the robust estimator.
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9.5 Open-loop Simulations of Both Types of the Robust Estimator

9.5.1 Introduction

In this section, we will simulate the robust estimator using both types of the parameter

estimator, one time-domain and one frequency-domain. This will provide a comparison of the two

kinds of parameter estimators. In Section 9.3, we saw that the dead-zone based time-domain

parameter estimator did not perform well in our simulations. We expect the frequency-domain

parameter estimator to perform better than the time-domain parameter estimator. A second objective

of this section is to see how the robust estimator (using the frequency-domain parameter estimator)

performs for several different types of unmodeled dynamics.

9.5.2 Simulation of the R0bus_ E_timator using the Time-domain Parameter Estimator

In this subsection, we will simulate the robust estimator using the time-domain parameter

estimator of Chapter 4 and the modification discussed in Subsection 4.5.3. That is, we use the

robustified least-squares parameter estimator with the regularized constant trace modification. The

input signal u[n] of Subsection 9.2.8 will be used in this simulation. We simulate the robust

estimator in a situation where both unmodeled dynamics and a disturbance are present. This

simulation is the logical follow-on to the simulations of Section 9.3; where the effects of the

unmodeled dynamics and the disturbance were considered individually.

Simulation 9.5.1: Robust Estimator using the Time-domain Parameter Estimator, Case 3

For this simulation we will use Case 3 of Subsection 9.2.4, and will introduce a

disturbance. That is, we use the case of time-delay unmodeled dynamics. The disturbance that

was described in Subsection 9.2.6 will be used in this simulation with a scaling factor of

dfactor--0.1. For initial values in the frequency-domain bounding part of the robust estimator, we

set the cumulative frequency-domain estimate to the frequency response of the nominal model for

_=0.8 and 03n=l rad/sec., and set the corresponding cumulative frequency-domain bounding

function to the best bounding function that can be found using only a priori knowledge of the plant.

Thus, we start the frequency-domain bounding method with parameter values that are very far from

the true values of _---0.2 and 0_n=2 rads/sec. We now present our results.

The 0.04 sec. time delay has only a small effect on the plant output. The time histories of
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theinput signalu[n] andtheoutputsignaly[n] arealmostthesameasthoseof Figure9.28. For

theinitial parameterestimatesweagainusedthevaluesthatcorrespondto thechoiceof 4--0.8and

C0n=l rad/sec. In Figure 9.49, we show the parameter errors. For reference, in Table 9.5 we list

the true yalues, initial estimates and initial errors of the parameters. In addition, we show the

parameter errors at n=200 (25.13 sees.) and n=2500 (314.16 sees.). In Table 9.6, we again show

the true parameter values and the values at n-2500; however, we also show the nearest grid point

0", of the 101 grid points, that the estimate is projected to. In addition, we show the projected

parameter errors, that is, 0_*[2500] = 0*[2500] - 00.

Table 9.5: Parameter Estimates of the Time-domain Algorithm for Case 3 and a Disturbance.

__.___ _  rol _ 0_01 i 0"r2001 i 0"'r25001
....__al__ [ 1.84458 1 1.80358 I -0.04100 I 0.01910 10.02768
..._%__ I -0.90436 I -0.81786 I 0.08650 I -0.02353 I -0.03477

I 0.62189 1 0.07834 I -0.54355 I -0.43629 I -0.41353

Table 9.6: Projected Parameter Estimates of the Time-domain Algorithm for Case 3 and a
Disturbance.

I On......_._ I 0125001 I 0"[25001 10"[25001 12125001

....._al__ I 1.842t58 I 1.87225 I 0.02768 I 1.88217 I 0.03759

.....___. I -0.90436 I -0.93913 I -0.03477 I -0.90028 I 0.00410
b.._..b_ I 0.62189 I 0.20836 I -0.41353 I 0.18132 I -0.44057

Comparing Figures 9.29 and 9.49, we see that the parameter errors are quite large for the present

simulation. The above tables show that even after a long time, the parameter estimates are still

poor. The projection onto the grid of 101 points doesn't help improve the parameter estimates

overall. To gain insight, we investigate the operation of the dead-zone mechanism.

In Figure 9.50, we show the magnitude bound el[n] and the actual error signal el[n ], which

is due to both the effects of unmodeled dynamics and the disturbance in this simulation. The

components of the magnitude bound el[n ] and the actual error signal el[n] are shown in Figures

9.51-52. Recall that e2[n] and e3[n] bound the effect of the unmodeled dynamics and the

disturbance, respectively. From these figures, we see that the unmodeled dynamics bounding

signal is the major component of el[n ]. In Figure 9.53, we show both the prediction error e[n]

and the threshold signal 13el[n]. The dead-zone signal ag[n] of Subsection 4.5.2, is shown in
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Figure9.54. As before,by comparing Figures 9.53 and 9.54, we see how the dead-zone signal is

nonzero only when the magnitude of the prediction error e[n] is larger than the threshold signal

[3el[n ]. Further, by comparing Figure 9.54 with Figures 9.34 and 9.38, which show the

dead-zone signal for the previous cases, we see that in the present simulation the parameter

estimator is turned-off even more than in either of the previous two simulations of the time-domain

parameter estimator. As before, since the parameters are updated for only a few short time

intervals, it is not surprising that the parameter estimator yields poor parameter estimates. We now

present our frequency-domain results.

The cumulative frequency-domain error bounding functio_l at n=2500 (314.16 sees.) is the

same for this simulation as it was in Simulation 9.4.1, where Ecumf, Nn(O_k ) is shown in Figure

9.46. This is not surprising since the frequency-domain error bounding function depends only on

the input u[n] and the disturbance din]. In addition, the actual error magnitude, IEcumf, Nn(¢Ok)l, is

also the same for this simulation as it was in Simulation 9.4.1. The additive error in the

frequency-domain and our bound on it, both depend only on the input signal and the disturbance,

the plant. In Figure 9.55, we show the final bounding function _'sun(eC°k T) for n=2500not

after the smoothing of Asun(e°)k T) and the addition of the safety factor,(314.16 sees.), as

described in Sections 5.7-8. This uncertainty bounding function is very large and would allow

only a very low closed-loop bandwidth to be achieved in a closed-loop adaptive control context.

The problem with the performance of the robust estimator in this simulation is the poor

performance of the dead-zone based parameter estimator. The frequency-domain bounding method

part of the robust estimator works well, but the dead-zone based time-domain parameter estimator

works so poorly that the resulting uncertainty bounding function is uselessly conservative.

Fortunately, as we will see in the next subsection, the frequency-domain parameter estimator works

much better than the dead-zone based parameter estimator.
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Figure 9.54: Dead-zone Signal _[n] for Robust Estimator.

The dead-zone signal is nonzero only when the magnitude of the prediction error is greater than the

threshold signal.
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using Time-domain Parameter Estimator, Case 3. Straight line is a priori bound zXu.

9.5.3 Simulation of the Robust Estimator using the Frequency-domain Parameter Estimator

In this subsection, we will simulate the robust estimator using the frequency-domain

parameter estimator that was described in Section 5.4. The input signal u[n] of Subsection 9.2.8

will be used in all of the simulations in this subsection. In addition, the disturbance that was

described in Subsection 9.2.6 will again be used with a scaling factor of dfactor=0.1, in all of the

simulations in this subsection. Since the input u[n] and the disturbance d[n] are the same for all

three of the simulations of this section, the cumulative frequency-domain error bounding function at

n=2500 (314.16 sees.) is also the same. This error bounding function is also the same as it was in

Simulation 9.4.1, where Ecumf, Nn(o_) is shown in Figure 9.46. In addition, the actual error

magnitude, IEcumf, Nn(COk)l, is the same for the three simulations of this subsection as it was in

Simulation 9.4.1. In this subsection, we simulate the robust estimator (using the

frequency-domain parameter estimator) for three different cases of unmodeled dynamics.

However, first we must choose the weighting function in the frequency-domain parameter
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estimator.

Choice of the Frequency-weighting Function in the Frequency-domain Parameter Estimator

We must choose the frequency-weighting function f(co) that is used in Eqn. (5.4.13) to f'md

the diagonal frequency weighting matrix W. As was discussed in Section 5.4, if we wanted to

choose a weighting function that yields a least-squares fit between the cumulative

frequency-domain estimate and the true frequency-domain estimate, then we would choose the

function to be

1 /le 2jtoT - a 1 e jc°T - a21, (9.5.1)

where, of course, we don't know the true parameters a 1 and a2. Since there are high-frequency

unmodeled dynamics in our true plant, we want to de-emphasize the measured frequency-domain

information at high frequencies. Thus, ideally, we don't choose Eqn. (9.5.1) but, rather, we

choose a weighting function that has, for example, a single-pole roll-off above and beyond the two

pole roll-off of Eqn. (9.5.1). We choose

fit.o) = 14 / (j_ + 4)13. (9.5.2)

This weighting function will result in a better fit at low-frequencies than at high frequencies in the

frequency-domain parameter estimator. In Figure 9.56, we show this weighting function f(_).
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Figure 9.56: Weighting Function f(c0) for Frequency-domain Parameter Estimator.
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Modification of the Frequency-domain Parameter Estimator Based on a Priori Information

The frequency-domain parameter estimator that was described in Section 5.4 could be used

to find estimates of the four parameters, a 1, a 2, b 0 and b 1. However, as was the case for the

time-domain parameter estimator (see Subsection 9.3.1), we can make use of a priori information

to modify the frequency-domain parameter estimator. From the problem description of Subsection

9.2.1, we know that the D.C. gain of the plant is unity. So, using Eqn. (9.2.4) and the fact that

G(z)=l for z=l, we know that

b 1 = 1 - a 1 - a2 - b 0 (9.5.3)

as was previously noted in Eqn. (9.2.8). This a priori known constraint allows us to use a

parameter estimator that only estimates the three parameters, a 1, a2 and b 0. We will now develop a

modified form of the frequency-domain parameter estimator of Section 5.4. Using Eqns. (5.4.3-4)

and (9.5.3), we fred that

z2 G(z,00) - 1 = [ z G(z,00) - 1 G(z,00) - 1 z - 1 ] [ a 1 a2 b 0 IT (9.5.4)

or

z 2 G(z,00) - 1 = [ z G(z,00) - 1 G(z,00) - 1 z - 1 ] 00m

where

00 m=[al a2 b0]T

(9.5.5)

(9.5.6)

and where the subscript 'm' stands for 'modified' form of the parameter estimator. The definition

of Eqn. (9.5.6) is the same as that of Eqn. (9.3.23) for the modified time-domain parameter

estimator. The development of the modified frequency-domain parameter estimator proceeds the

same as the development of Section 5.4, except that Eqn. (9.5.5) is used in place of Eqn. (5.4.5).

In the following simulations, the modified frequency-domain parameter estimator will be used. For

the sake of clarity we will drop the subscript 'm' notation throughout the discussion of the

following simulations.

Simulation 9.5.2: Robust Estimator using the Frequency-domain Parameter Estimator. Case 3

For this simulation we will use Case 3 of Subsection 9.2.4, which has time-delay

unmodeled dynamics, and will introduce a disturbance with a scaling factor of dfactor--0.1. For

initial values in the frequency-domain bounding part of the robust estimator, we set the cumulative

frequency-domain estimate to the frequency response of the nominal model for 4=0.8 and COn=1
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rad/sec.,andsetthecorrespondingcumulativefrequency-domainboundingfunctionto thebest
boundingfunctionthatcanbe foundusingonly apriori knowledgeof theplant. Thus,westartthe

frequency-domainboundingmethodwith parametervaluesthatareveryfar from thetruevaluesof

4=0.2and03n=2rads/sec.We now presentour results.

Again,the0.04see.timedelayhasonly asmalleffecton theplantoutput. Thetime
historiesof theinput signalu[n] andtheoutputsignaly[n] arealmostthesameasthoseof Figure

9.28. Thefrequency-domainparameterestimatorwasactuallyusedonly at theendof the

simulation.In thefollowing tablewe list thetrueparametervalues,andtheparameterestimatesand
errorsat n=2500(314.16sees.).

Table9.7: ParameterEstimatesof theFrequency-domainAlgorithm for Case3 andaDisturbance.

I Oo......._l  r25001 i . r25001 k....Q*r25001  r25001
----aim 1.84458 i 1.86098 t 0,01640 0 1.84458 i 0.0

a2m I -0.90436 I -0.92211 I -0.01775 I -0.90436 I 0.0

b_....h__ I 0.55545 I -0.06644 I 0.62189 I 0.0

In addition, we show the nearest grid point 0", of the 101 grid points, that the estimate is projected

to. Since the resulting grid point happens to correspond to the true parameter values for this

simulation, the final parameter vector error 0* is zero. We now present our frequency-domain

results.

In Figure 9.57, we show the final bounding function A-sun(e°)k T) for n=2500 (314.16

secs.), after the smoothing of Asun(e°'_k T) and the addition of the safety factor, as described in

Sections 5.7-8. This uncertainty bounding function is much smaller than that of Figure 9.55 for

the robust estimator using the dead-zone based time-domain parameter estimator. This significant

difference is due to the superior performance of the frequency-domain parameter estimator as

compared with the dead-zone based one. The uncertainty bounding function of Figure 9.57 is

always less than unity and would be useful for increasing the bandwidth in a closed-loop adaptive

control context.

A Comparison of the Dead-zone based Time-domain Parameter Estimator and the

Frequency-domain Parameter Estimator

The previous two simulations, Simulations 9.5.1 and 9.5.2, are the same except that the

dead-zone based time-domain parameter estimator has been used in the first simulation and the
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frequency-domainparameterestimatorhasbeenusedin thesecondone. Thatis, we can compare

the parameter estimates of the two different types of parameter estimators for the plant of Case 3

with a disturbance. We summarize the results of these two simulations below where the data from

Tables 9.5-7 has been used.

Table 9.8: Comparison at n=2500 of the Parameter Estimates of the Time-domain and the
Frequency-domain Algorithms for Case 3 and a Disturbance.

I Time-domain
I

I ,0,[25001

----_1_ I 0.02768

.---_-0-- 11 -0.03477-0.41353

Freq.-domain

0"[2500]
0.01640

I -0.01775
-0.06644

Time-domain

i g*[25001
0.03759
0.00410 I 0.0

-0.44057 I 0.0

I Freq.-domain
I
1_[25001
I 0.0

In this table, we see that at the end of the simulations, the raw parameter errors 012500] of the

dead-zone based time-domain parameter estimator are much larger than the raw estimates of the

frequency-domain parameter estimator. In addition, we see that the errors of the projected

parameter estimates 0"[2500] of the dead-zone based time-domain parameter estimator are also

much larger than the raw estimates of the frequency-domain parameter estimator. In particular, we

note that the dead-zone based parameter estimator yields a very poor estimate of the b 0 parameter,

as compared with the frequency-domain parameter estimator.

These results tell us that over a long period of time, the frequency-domain parameter

estimator is likely to yield much better estimates. These results do not tell us how quickly the

frequency-domain parameter estimator arrives at its estimates as compared with the time-domain

parameter estimator. However, by construction, the frequency-domain parameter estimator

improves its estimates as fast as the robust estimator improves its frequency-domain estimate. That

is, the estimates of the frequency-domain estimator are found by performing a frequency-domain fit

to the evolving frequency-domain estimate of the plant. Thus, the speed of the frequency-domain

parameter estimator is as fast as it needs to be in the sense that it yields accurate estimates when the

frequency-domain bounding function becomes small.

Simulation 9.5.3: Robust Estimator using the Frequency-domain Parameter Estimator, Case 2

For this simulation we will use Case 2 of Subsection 9.2.4, which has second-order

unmodeled dynamics, and will introduce a disturbance with a scaling factor of dfactor=0.1. We

use the same initial values for the frequency-domain method as in the previous simulation. We

now present our results.
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The second-order unmodeled dynamics have only a small effect on the plant output. The

time histories of the input signal u[n] and the output signal y[n] are almost the same as those of

Figure 9.28. In the following table we list the true parameter values, and the parameter estimates

and errors at n=2500 (314.16 sees.).

Table 9.9: Parameter Estimates of the Frequency-domain Algorithm for Case 2 and aDisturbance.

t 0 t  r25001 t  r25001 L._fi*r25001  r25001
......_1 I 1.8_1 1.84961 I 0.00503 I 1.84458 I 0.0

a,2__ I -0.90436 I -0.90966 I -0.00530 I -0.90436 I 0.0
.___._b- I 0.62189 I 0.60184 I -0.02005 I 0.62189 I 0.0

In addition, we show the nearest grid point 0", of the 101 grid points, that the estimate is projected

to. Since the resulting grid point happens to correspond to the true parameter values for this

simulation, the final parameter vector error 0* is zero. Comparing the values of 0_2500], we see

that the parameter errors for this simulation are about a factor of 3 smaller than for the previous

simulation. This is because the second-order unmodeled dynamics have a smaller effect than the

time-delay unmodeled dynamics. We now present our frequency-domain results.

In Figure 9.58, we show the final bounding function _'sun(e°)k T) for n=2500 (314.16

sees.), after smoothing and the addition of the safety factor. This uncertainty bounding function is

smaller than that of Figure 9.57 since again the second-order unmodeled dynamics are smaller than

the time-delay unmodeled dynamics, as can be seen in Figures 9.11-12. The uncertainty bounding

function of Figure 9.58 is always much less than unity and would be useful for increasing the

bandwidth in a closed-loop adaptive control context.

Simulation 9.5.4: Robust Estimator using the Frequency-domain Parameter Estimator, Case 4

For this simulation we will use Case 4 of Subsection 9.2.4, which has second-order

unmodeled dynamics, and will introduce a disturbance with a scaling factor of dfactor--0.1. Recall

that Case 4 differs from Case 2 in that the nominal model parameters are different. For initial

values in the frequency-domain bounding part of the robust estimator, we set the cumulative

frequency-domain estimate to the frequency response of the nominal model for 4--0.2 and O)n=2

rads/sec., and set the corresponding cumulative frequency-domain bounding function to the best

bounding function that can be found using only a priori knowledge of the plant. Thus, we start the

frequency-domain bounding method with parameter values that are vei'y far from the true values of
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4=0.8andCOn=ltad/see.We notethatthis is adifferentsetof initial conditionsthanwasusedfor

Simulations9.4.1-2,and9.5.1-3. Thismeansthatthecumulativefrequency-domainbounding

functionwill bedifferent,initially, for thissimulationthanfor theprevioussimulations.However,

for thissimulation,the input signalis largeenoughsothattheinitial conditionsmakeno

contributionto thethecumulativefrequency-domainboundingfunctionatn=2500(314.16secs.).

Thus, Ecumf,Nn(C0k) andIEcumf,Nn(COk)larethe sameatn=2500asin Simulation9.4.2. We

nowpresenttherestof our results.

Thetimehistoriesof theinput signalu[n] andtheoutputsignaly[n] areshownin Figure

9.59. In thefollowing tablewe list thetrueparametervalues,andtheparameterestimatesand
errorsatn=2500(314.16sees.).

Table9.10: ParameterEstimatesof theFrequency-domainAlgorithmfor Case4 anda
Disturbance.

----_1--I 1.80_58 I 1,83871 I
____0__1 -0,81786 I -0.85058 I

I 0.07834 I 0.07709 I

_[25001 t 0"r250Ol  rzs001m
0.03513 I 1.84111 I 0.03753

-0.03272 I -0.85571 I -0.03785
-0.00125 I 0.10109 I 0.02275

In addition, we show the nearest grid point 0", of the 101 grid points, that the estimate is projected

to. The projected parameter estimate doesn't yield the true parameter values in this simulation,

although the true parameter values do correspond to one of the 101 grid points. Instead, the

projected parameter vector 0*[2500] corresponds to the continuous-time parameters of 4=0.62 and

On=l rad/sec. So, the parameter estimator gets con correct, but is off on the value of _ by -0.18,

since the true value is 4=0.8. We also see from these results that the projection of the parameter

vector estimate didn't help reduce the parameter errors, since the raw parameter errors 0"[2500] are

smaller than the projected parameter errors 0"[2500]. The parameter estimation results of this

simulation are considered satisfactory in light of the difficult identification problem that occurs here.

The frequency-domain values of the plant transfer function are much less sensitive to changes in

when it is close to unity than when it is close to zero. What really matters is how good our final

frequency-domain results are.

Figure 9.60, we show the final bounding function _sun(e°_ T) for n=2500 (314.16In

secs.), after smoothing and the addition of the safety factor. This uncertainty bounding function is
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larger thanthatof Figure9.58,which correspondsto the_--0.2,O_n=2 rads/sec, case. Thus, even

though we have used the same second-order unmodeled dynamics in Simulations 9.5.3 and 9.5.4,

we get a larger multiplicative uncertainty bounding function in the later case. There are two causes

for this result: 1) the parameter estimator yields slightly erroneous values in Simulation 9.5.4, and

2) the true plant of Simulation 9.5.4 rolls off at a lower frequency than that of Simulation 9.5.3.

Recall that in both simulations the additive error bounding function Ecumf, Nn(o_) is the same.

So, since the true plant of Simulation 9.5.4 is smaller at high frequencies then that of Simulation

9.5.3, the resulting multiplicative error bounding function will be larger. As a final note, we see

that the uncertainty bounding function of Figure 9.60 is still always less than unity and would be

useful for increasing the bandwidth in a closed-loop adaptive control context.
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Figure 9.57: Final Uncertainty Bounding Function _sun(e°'_k T) for n=2500, Robust Estimator

using Frequency-domain Parameter Estimator, Case 3. Straight line is a priori bound zXu.
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Chapter9 Page274

Q

d-

O'3
t--,o

Z

s

/
/

s
J

/

t,n

al-l

0

!

!

0.0

d ..... °°1

1

1
O

1

I

I
b
I
I
I

L

1
I

--?
i

# i
s i
w i
i i

j i
t

t i
i i

e i
w
i i
i i

e
|
i
i
J
t
w

/ \

il
t i

t
b
i

t i
i t

e i
# i i

p i

,1
wl

t

e
#

e

]
i #

e

i

]
i /I

i e

i, e

i
d

I I I I

5.0 I0.0 15.0 20.0 25.0

TIME IN fiECS.

Figure 9.59: Plant Input u[n] and Output y[n] for Case 4, with a Disturbance.
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9,_,4 Conclusion

In this section, we have studied the properties of the robust estimator through four

simulations, one using the dead-zone based time-domain parameter estimator and the rest using the

frequency-domain parameter estimator. We summarize our conclusions concerning these

simulations.

1) The frequency-domain parameter estimator performs better than the dead-zone based

parameter estimator.

2) The robust estimator (using the frequency-domain parameter estimator) works well and can

yield a multiplicative uncertainty bounding function that is less than unity and, hence, useful

for control design.

3) Since the additive error bound (at a given frequency) that the robust estimator can achieve is

governed by the input signal and the disturbance alone, a smaller multiplicative error bound (at

a given frequency) will result for a plant that is larger (at a given frequency).

These simulations show that the robust estimator (using a frequency-domain parameter estimator)

can provide us with a useful bounding function on the multiplicative modeling uncertainty. Again,

by useful we mean a bounding function that is, for example, less than unity for frequencies that are

lower than the target closed-loop bandwidth. As we will see in the next section, this will allow the

robust adaptive control system to increase the closed-loop bandwidth using the knowledge

provided by the robust estimator.
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9.6 Closed-loop Simulations using the Robust Estimator

9.6.1 Introduction

In this section, we will demonstrate that the robust estimator can be used in a robust adaptive

controller to provide improved closed-loop performance as compared with a non-adaptive

controller. In the simulations of this section, we will only use the robust estimator that uses the

frequency-domain parameter estimator. We do this because, in the open-loop simulations, the

frequency-domain parameter estimator was seen to perform better than the dead-zone based one.

Several closed-loop simulations will be performed using the simple adaptive controller that was

described in Chapter 7. In addition, we will implement a variation of the probing signal strategy

that was developed in Section 7.4.3. The primary purpose of this section is to evaluate the

behavior of the robust estimator in a closed-loop scenario and, hence, to see if it holds promise for

adaptive control. In the following simulations, we aim to show the strengths as well as the

weaknesses of the robust estimator.

9.6.2 Description of the Closed-loop Adaptive System and Performance Goals

Description of the Basic Closed-loop System

In this subsection, we describe the closed-loop adaptive system that will be simulated in the

following subsections. Figure 9.61 shows the block diagram of the complete robust adaptive

control system. We use the following simple pole-zero cancellation compensator,

K(z, §) = G-l(z, 0) e / (z - 1), (9.6.1)

which was developed in Section 7.3. We assume that the constants e 1 and e2 of Theorem 7.2 are

effectively zero in this subsection. In Eqn. (9.6.1), the compensator gain c will be determined

using Eqn. (7.3.5) and Eqn. (7.3.24) in place of Eqn. (7.3.6), with e2=0. The compensator will

be updated every 100 sample times or every 12.57 sees. This is considered infrequent since, as

was discussed in Subsection 9.2.3, the slowest possible time constant of the true plant is 2.5 sees.

While this does make the closed-loop system time-varying, it has been shown that, if the system

varies "sufficiently slowly", then the exponential stability of the frozen-time systems implies the

exponential stability of the slowly time-varying system. See [36] for a derivation of an upper

bound on the variation rate for a slowly varying discrete-time system. So, if we guarantee that each

compensator update yields a robustly stable LTI system and we vary the compensator slowly
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enough, then the time-varying system is exponentially stable.

Probing Signal 1Generati on
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vIn]

Compensator +

K(z)
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Gtrue(Z)

Output

+ y[n]

Nominal

Model

L On-line

Control-law Robust

Computation Estimator

Frequency-domai n

Bounding Function

Figure 9.61: Complete Robust Adaptive Control System with Probing Signal.

The saturation block in Figure 9.61 is introduced because we must know a bound on the

plant input signal u[n] as was assumed in AD3.1 of Chapter 3. We do not consider this a major

limitation of the theory in that most physical systems have saturating actuators anyway. In the

following simulations, we will attempt to avoid saturation at the plant input. One ramification of

this is that the reference signal r[n] must be chosen to be much smaller than the input signal that

was used in the previous simulations of this chapter. To avoid saturating at the input, for a system

with the target closed-loop bandwidth of 5 rads/sec., we choose the reference signal r[n] to be one

tenth of the input signal that was described in Subsection 9.2.8. Further, we also reduce the

disturbance to be a tenth of the disturbance that was used in the previous simulations. That is, in all

of the following simulations we use the disturbance signal of Subsection 9.2.7 with dfactor=0.01,

as compared with dfactor--O.1 for the previous simulations. Recalling our discussion of how the

I

remainder term Ere m looks like a constant disturbance term at all frequencies, we must also reduce

this term. From the table in Subsection 9.4.1, we choose the memory length M=200, as compared

with M=175 that was used in the previous simulations. This choice reduces Ere m by a factor of 3
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to yield a value of 0.28901 for M=200. We scaled down our reference and disturbance signals by

the same amount so that the signal-to-noise ratio of the closed-loop simulations was similar to that

of the previous open-loop simulations.

In the following simulations we simulate the robust estimator using the frequency-domain

parameter estimator. We use the projection method that was described in Subsection 9.2.9 and the

weighting function of Eqn. (9.5.2) in the frequency-domain parameter estimator. In the

frequency-domain bounding method we include the smoothing and safety factor modifications that

were described in Sections 5.7 and 5.8, respectively. The robust uncertainty modification of

Section 5.6 is not used in the simulations. Instead, we use the less conservative modification of

making sure that the final uncertainty bounding function doesn't become less than the a priori

function on the unstructured uncertainty, Au(eOkT). That is, we denote the finalbounding

uncertainty bounding function that is used by the control-law update algorithm by _-sun(e°_kT)new

where

_sun(e°_T)new = max{ _sun(e°_kT), Au(ea_kT ) }, (9.6.2)

and where _-un(eOk T) is the final bounding function yielded by the robust estimator.

Description of the Probing Simaal Strategy

In the following simulations we will introduce a probing signal for some cases. We will use

a modified form of the probing signal strategy that was developed in Section 7.4.3. First, we

discuss the modifications and then we discuss the starting, stopping and updating conditions of the

probing signal strategy.

The DFT magnitude of the probing signal, IVNn(O)k)l, will be generated using the following

equation which is the same as Eqn. (7.4.18) except for the presence of the scaling factor T.

IVNn(O_k)l = _.(1 + [c/leJ°"k T- ll] [1 + _sun(eJ°_kT, §)new] ).

( E--rem + _N(O_k) ) / ( I(eJ°_k T- 1) / Ctc 1 + 11 inf {IG(eJ°3kT,0)l} ), 'V_ k.

0eO

(9.6.3)

Recall that in our original derivation of IVNn(C0k)l we assumed that: 1) the plant input signal was

periodic with period N {see Eqn. (7.4.1)} and 2) that the nominal model fit the cumulative



Chapter9 Page279

frequency-domainestimateexactly { see Eqn. (7.4.4)}. Since these assumptions are not satisfied in

the following simulations, we introduce the aforementioned scaling factor. We choose _,=10 in

Eqn. (9.6.3) so that we stand a better chance of meeting our target closed-loop bandwidth. In

addition, we choose the (continuous-time) target closed-loop bandwidth to be 5 rads/sec. With

reference to Eqn. (7.3.20), we know that the nominal c!osed-loo p system is

Tcl(Z) = c / (z - 1 + c). (9.6.4)

So, if we want this system to have a discrete-time pole that corresponds to the continuous-time

target bandwidth, we must choose the target closed-loop compensator gain Ctc 1 as follows,

Ctc1 = 1 - e -(5 rads/sec.)T = 0.46651 (9.6.5)

where we have used Eqn. (7.4.10). This is the value ofcte 1 that we use in Eqn. (9.6.3).

As a second modification to the original probing signal strategy, we use a reduced number of

sinusoids in our generation of a time-domain signal. With reference to Eqn. (7.4.21), we use the

following equation to generate the time-domain probing signal,

N/4

v[n] = 1 _ IVN(O_'k)I [ ak cos( 2 g k n / N ) + bk sin( 2 _ k n / N ) ], (9.6.6)
N k-1

for n=0,...,N-1

where ak and b k axe found using Eqns. (7.4.22-23). We choose not to excite the system at high

frequencies since we will then be exciting the unmodeled dynamics of the plant. We also don't

excite the system at or----0since we already know the D.C. gain of the true plant. By only exciting

the system for frequencies that are less than _k=_(N/4)=12.5 rads/sec., we prevent ourselves from

learning about the plant at high frequencies, unless of course the reference signal introduces

high-frequency signals. This can cause problems as we will see later in the simulations. A benefit

of this reduced excitation modification is a smaller time-domain probing signal.

A third and final modification concerns the selective turning-off of the probing signals for

certain frequencies. We turn-off a given sinsoidal frequency when

E---curnf,Nn(O_k ) < rl I(_J°_k T- 1) / Ctc 1 + 11( inf {IG(eJ°_kT,0)l} ). (9.6.7)

0_®

This equation differs from Eqn. (7.4.26) in that we have introduced a scaling factor rl, which we

choose to be 0.5 in the following simulations. We use this scaling factor to make sure that after

adding the safety factor of Section 5.8, we still have a small enough uncertainty bounding function
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to be able to achieve our target closed-loop bandwidth. Now we discuss starting, stopping and

updating conditions for the probing signal strategy.

In the following simulations we want things to happen in a finite time frame, so for the cases

that use the probing signal we start the probing signal at time 0. The probing signal is updated

every N=1000 time samples, or every 125.66 sees. That is, in Eqn. (9.6.2) we use the most recent

values of the compensator gain c and the uncertainty bounding function Asun(eJ°_ T, 0)new.

Updating the probing signal more often than the DFT length can cause problems. For example, if

the probing signal were updated 10 times during the 1000 point DFT, then the transitions change

the frequency content of the whole 1000 point signal. The probing signal is turned off as soon as

the target compensator gain Ctcl = 0.46651 is achieved.

Adaptive Control and Closed-loop Performance Goals

We briefly discuss the overall goal of the robust adaptive control system. The goal of the

robust adaptive control system is to reduce the structured uncertainty to zero and thus allow

improved closed-loop control. Ideally, we would like to have the uncertainty bounding function

Asu approach the a priori bounding function A u on the unstructured uncertainty alone. If the

uncertainty were reduced to the a priori bounding function Au of Eqn. (9.2.24), which is never

greater than unity, then the control-law update algorithm would yield a compensator gain of c=l.

As was discussed in Remark 4 of Section 7.3, this would yield a deadbeat system, that is, the

nominal closed-loop system would become simply a delay of one sampling period, Tcl(Z)=Z "1. In

the following simulations we will allow the adaptive control system to become deadbeat if it can

reduce the uncertainty sufficiently. However, alternatively we could disallow the compensator gain

c from becoming larger than the target gain of 0.46651. If this is modification is used, the resulting

system is more robust than a deadbeat system.

9.6.5 Simulations using Case 2

In this subsection, we simulate the closed-loop adaptive system that was described above

using the true plant of Case 2 of Subsection 9.2.4, which includes second-order unmodeled

dynamics. Recall that the nominal model of Case 2 corresponds to the continuous-time parameters

4=0.2 and t.0n=2 rads/sec. In addition, we introduce a disturbance with dfactor=0.01. We perform
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two simulations, one without and one with the probing signal. For initial values, in both

simulations, we set the cumulative frequency-domain estimate to the frequency response of the

nominal model for 4=0.8 and tOn=l rad/sec., and set the corresponding cumulative

frequency-domain bounding function to the best bounding function that can be found using only a

priori knowledge of the plant. Thus, we start the frequency-domain bounding method with

parameter values that are very far from the true values of 4=0.2 and COn=2 rads/sec.

Simulation 9.6.1: Case 2, with a Disturbance, without a Probing Signal

In this simulation we do not use a probing signal, but rely solely on the reference signal r[n]

for excitation. First, we present a time history of the simulation in Table 9.11. In this table, we

show the compensator gain that is computed by the control-law update algorithm every 100 time

samples. As noted in the table, the compensator is not updated when the newly computed

compensator gain is smaller than the current compensator gain. We also show the values of the

continuous-time parameters that correspond to the nearest point in the 101 point projection grid.

For insight, we compute the value of the continuous-time pole that corresponds to the discrete-time

pole of the nominal closed-loop system. We compute

Continuous-time Bandwidth = - (1 /T) ln(1 - c), (9.6.8)

where c is the current compensator gain. From this table we see that the frequency-domain

parameter estimator is able to find the true parameters of the nominal plant model by time n=2200

(276.46 sees.). In addition, the adaptive system is able to increase the bandwidth from 0.10

rad/sec to 2.49 fads/see. However, we don't achieve our desired closed-loop bandwidth of 5

rads/see, in the time frame of the simulation. It is possible that the system could eventually reach

this target closed-loop bandwidth, as the sucessively higher bandwidth compensators are

introduced. Using a priori information only we are stuck with the low nominal bandwidth of 0.10

racl/sec, for our control-law design methodology and our choice of initial conditions. Excited only

by the relatively small reference signal r[n], the adaptive system is able to increase the bandwidth

and thus yield better command-following properties for the closed-loop system. This improvement

in command following can be seen in Figure 9.62, where we show the reference signal r[n] and the

plant output y[n] on a broken time male. Compare the command following for the time intervals

just after 0, 125 and 250 sees. The tracking error,

et[n] = r[n] - y[n], (9.6.9)

is shown in Figure 9.63, where we see that the error reaches zero faster just after 250 sees. than it

does just after 0 sees. In Figure 9.64, we show the cumulative frequency-domain error bounding
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function, Ecumf,Nn(ta_k ), and the actual error magnitude, IEcumf, Nn(O_k)l, for n=2500 (314.16

sees.). The effect of the disturbance is clearly evident in the frequency range from 0 to 2.5

rads/sec. At higher frequencies, we can still see visages of the smooth a priori bounding function

that was used to initialize the frequency-domain bounding method. In Figure 9.65, we show the

bounding function A-sun(eJ°_k T) yielded by the robust estimator along with a straight-line

representing the lower bound, Au(e.lt'°kT),; that we enforce via Eqn. (9.6.2). Clearly, for this

example, the modification of Eqn. (9.6.2) has no effect. From Figure 9.65, we see how the

low-frequency peak, which is due to the disturbaneel limits the bandwidth to 2.49 rads/sec.

Table 9.11: Simulation 9.6.1 - Case 2, with a Disturbance, without a Probing Signal.
True Continuous-time Parameters, _ = 0.2 and t.on = 2 rads/see.

(* denotes no compensator update)

Time
Index

n

100
200
300
400
500

Time

t

(sees.)
0

12.57
25.13
37.70

50.27
62.83 I
75.40

Computed
Compensator

Gain
0.01213
0.01213 *
0.01988
0.03430

0.03449
0.04213
0.04213 *

Continuous-time Continuous-time
Parameter Estimates Bandwidth

I I (radslsec.)
0.80 _._ 0.10

I 0.80 I
0.38
0.32
0.32
0.26

1.0
1.1
1.3
1.3
1.6

0.10
0.16
0.28
0.2.8
0.34

600 0.26 1.6 0.34

700 87.96 0.04382 0.26 1.6 0.36
800 100.53 0.05318 0.26 1.6 0.43

0.05318 *

0.05318 *
0.05540

0.06531
0.06712
0.07491
0.07349 *
0,07349 *
0.07349 *
0.07227 *
0.07696

0,08663
0.08663 *

0.18548

900
1000
1100
1200

1300
140o
1500

1600
1700
1800
1900

0.26
0.26

I 0.26 I
I 0.26

0.26

1.6
1,6 I
1.6
1.6

1.6
1.7

0.43

0,43
0.45
0.54

0.55
0.26 0.62
0.26 1.7 0.62

0,26
0.26

0.26
0.26
0.26

113.10
125.66

138.23 I
150.80
163.36

I 175.93 I
188.50 I
201,06 I
213.63 I
226.20

238.76
• 251,33

263.89

276.46 ,
I 289.03 I
I 301.59
I 314.16 I

0.26
0.20

1,7
1.7

1.8
1.8
2.0
2.0 I
2.0
2.0

2000
2100
2200

,2300
2400

25oo

0.18548 *
0.26857
0.26857 *

I 0.20
0.20

I 0.20

0.62
0.62
0.62
0.64

0.72
0.72

1.63
1.63
2.49
2.49
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Figure 9.62: Reference r[n] and Plant Output y[n] for Case 2, Without Probing Signal.
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Figure 9.63: Tracking Error, et[n ] = r[n] - y[n], for Case 2, Without Probing Signal.
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Figure 9.65: Asun(eC°k T) for n=2500, Case 2, Without Probing Signal. Straight line is a priori

bound A u.
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Simulation 9.6.2: Case 2, with a Disturbance and a Probing Signal

In this simulation we use the probing signal strategy that was described in Subsection 9.6.5.

Since the probing signal doesn't excite high frequencies (i.e. above 12.5 rads/sec.), we can only

gain high-frequency knowledge of the plant from the excitation due to the reference signal. A time

history of the simulation is presented in Table 9.12. From this table we see that the

frequency-domain parameter estimator is able to find the true parameters of the nominal plant model

by time n=900 (113.10 sees.). As expected, the probing signal allows the robust estimator to find

the true parameter values in a much shorter time than in the previous simulation. In addition, the

adaptive system is able to greatly increase the closed-loop bandwidth from the low initial value of

0.10 rad/see. At the end of the simulation, the nominal closed pole of the discrete-time system is

zero, which corresponds to an infinite continuous-time bandwidth via the relationship z=e sT.

However, we must recall that the nominal closed-loop system still has a delay of one sampling

period. The increases in bandwidth that occur after the probing signal is turned off are due to the

excitation of the reference signal. As was discussed previously, we could have prevented the

system from becoming deadbeat by not allowing the compensator gain to become any larger than

the value that achieves our target closed-loop bandwidth.

From this simulation, we see that the probing signal gets things started for the adaptive

control system, but is turned-off at n=1100 (138.23 secs.) when the nominal closed-loop

bandwidth exceeds our target value. Comparing the results of this simulation with the previous

one, we see that the probing signal has indeed helped the robust estimator identify the system and

yield a high-performance closed-loop system. However, in the following time-domain figures, we

will see how the probing signal also greatly disturbs the system, preventing any semblance of

command-following when the probing signal is present.

In Figure 9.66, we show the probing signal v[n]. The signal is only updated once at n=1000

(125.66 sees.) and is changed very little at this time, since the compensator gain c is still small.

The reference signal r[n] and the plant output y[n] are shown, on a broken time scale, in Figure

9.67. From this figure, it can be seen that, after the probing signal is turned off, the command

following appears to be good. From Table 9.12, we know that after n=2200 (276.46 secs.) the

nominal closed-loop system is simply a delay. In Figure 9.68, we show r[n] and y[n] again, on a

shorter time scale, to show that the actual closed-loop system indeed performs like a delay of

T=0.126 secs. except for the presence of the unmodeled dynamics. The tracking error is shown in

Figure 9.69, where the effects of the probing signal are again apparent. Note that the tracking error

doesn't go to zero because of the unavoidable delay in the discrete-time closed-loop system. These

time-domain figures show how much the probing signal disturbs the system in this example. If we

used a smaller probing signal, then we would have to wait longer for the closed-loop bandwidth to
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increase.We now consider our frequency-domain results.

In Figure 9.70, we show the cumulative frequency-domain error bounding function,

Ecumf, Nn(O_k ), and the actual error magnitude, IEcumf, Nn(0ak)l, for n=2500 (314.16 sees.). We

see how the probing signal has provided accurate information for frequencies below 12.5 rads/sec.

At frequencies above 12.5 rads/sec, the bounding function is larger, since only the reference signal

excites the system for these frequencies. In Figure 9.71, we show the bounding function

Ssun(eJC°k T) yielded by the robust estimator along with a straight-line representing the lower

bound, Z_u(eJ°-_kT), that we enforce via Eqn. (9.6.2). For this example, the modification of Eqn.

(9.6.2) has an effect and prevents the uncertainty bounding function that is used in the control-law

update, from becoming less than Au(eJC°kT ). Comparing Figures 9.65 and 9.71, we see how the

probing signal has counteracted the effect of the disturbance in the low-frequency range. For

insight, we investigate the disturbance rejection properties of the closed-loop system at different

time indices.

In Figure 9.72, we show the magnitude of the nominal sensitivity transfer function,

S(z) -- (z - 1) / (z - 1 + c), (9.6.10)

for time indices n--0, n=500 (62.83 sees.), n-ll00 (138.23 secs.), n=2100 (263.89 sees.) and

n=2200 (276.46 sees.). That is, at the different time indices shown in Table 9.12, the compensator

gain e will have different values corresponding to different nominal sensitivity transfer functions.

We show the sensitivity transfer functions to make a point. From Figure 9.72 we see that, as time

increases, the closed-loop does an increasingly good job of rejecting disturbances in the

low-frequency range. This means that to produce the same effect at the plant input u[n], the

probing signal v[n] will need to be made increasingly larger to compensate for the fact that it is
I

being rejected by the closed-loop system. In the present simulation, we don't get to see this occur,

since the probing signal turns off before the loop can effectively reject it.
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Table9.12: Simulation 9.6.2 - Case 2, with a Disturbance and a Probing Signal.

True Continuous-time Parameters, _ = 0.2 and con -- 2 rads/sec.

(* denotes no compensator update)
(a denotes probing signal turn-off)

T'uTIe

Index
n

0
100

200 I
300

400
500
600

700
800
900

Time

t

(secs.)
0

12.57

25.13
37.7o

Computed
Compensator

Gain

0.01213
0.01698

0.02256
0.04243

50.27 0.04213
62.83
75.40
87.96

100.53
113.10

I 0,04303
0.04180

0.04155
0.04155
0.03990

Continuous-time
Parameter Estimates

I 0.80
0.44

0.38
0.32
0.26

0.26
0.26
0.26

0.26
0.20

1.0

Continuous-time
Bandwidth

(rads/sec.)
0.10
0.14

1.1 0.18
1.3
1.6
1.6
1.7
1.8
1.8

0.35
0.35
0.35
0.35
0.35
0.35
0.35* 2.0

1000 125.66 0.03990 * 0.20 2.0 0.35

Q.20
0.20
0.20
0.20
0.20
0.20

2.0
2.0
2.0
2.0
2.0

I 0.53177a

0.53177 *
0.53177 *
0.53177 *
0.53177 *

0.53177 *
I 0.53177 *
I 0.53177 *

0.53177 *
0.53177 *

138.23
150.80
163.36

0.65683

2.0

1100
1200
1300
1400
1500

1600
1700
1800
1900
2000
2100

2.0

6.04
6.04
6.04
6.04
6.04
6.04
6.04I 0.20

0.20 2.0 6.04
2.0

175.93
188.50

0.20
2.0

201.06

I 213.63
I 226.20

238.76
251.33
263.89
276.46 1.00000

1.00000 *

0.20

314.16

2200

2300
2400

2500

0.20

0.20

0.20

2.0
2.0

6.04

2.0

6.04

8.51
oo

289.03 1.00000" 0.20 2.0
301.59 1.00000" 0.20 2.0

L
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Figure 9.66: Probing Signal v[n] for Case 2 Simulation.
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Figure 9.68: Reference r[n] and Plant Output y[n] for Case 2, With Probing Signal, Short Plot.
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Figure 9.69: Tracking Error, et[n ] = r[n] - y[n], for Case 2, With Probing Signal.
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Figure 9.71: _sun(et°k T) for n=2500, Case 2, With Probing Signal. Straight line is a priori

bound A u.
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9.6.6 Simulations using Case 4

In this subsection, we simulate the closed-loop adaptive system using the true plant of Case 4

of Subsection 9.2.4, which includes second-order unmodeled dynamics. Recall that the nominal

model of Case 4 corresponds to the continuous-time parameters _=0.8 and 0_n=l rad/sec. In

addition, we introduce a disturbance with dfacto_--0.01. We perform two simulations, one without •

and one with the probing signal. For initial values, in both simulations, we set the cumulative

frequency-domain estimate tothe frequency response of the nominal model for 4=0.2 and 0_n=2

rads/sec., and set the corresponding cumulative frequency-domain bounding function to the best

bounding function that can be found using only a priori knowledge of the plant. Thus, we start the

frequency-domain bounding method with parameter values that are very far from the true values of

_=0.8 and mn=l rad/sec. From our open-loop simulation results, we expect the robust estimator to

have much more difficulty identifying Case 4, than it did with Case 2 in the previous subsection.

Again, this is because Case 4 rolls-off at a lower frequency than Case 2.
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Simulation 9.6.3: Case 4, with a Disturbance, without a Probing Signal

In this simulation we do not use a probing signal but rely solely on the reference signal r[n]

for excitation. First, we present a time history of the simulation in Table 9.13. From this table we

see that the frequency-domain parameter estimator is not able to find the true parameters of the

nominal plant model. In addition, the robust adaptive controller is not able to increase the

compensator gain and, hence, the nominal closed-loop bandwidth. Consequently, the system

exhibits very poor command-following properties as can be seen in Figure 9.73, which shows the

tracking error.

One cause for the poor performance of the robust estimator is our initial choice of

compensator. For 4=0.2 and ton---2 rads/sec., the plant-inverting compensator greatly attenuates

the frequency components around 2 rads/see, since this is where the nominal model corresponding

to 4=0.2 and C0n=2 rads/sec, has a large peak. In this simulation, it might have been wise to update

the compensator even if the newly computed compensator gain is not less than the current gain.

That is, the frequency response of a lower gain compensator might be more desirable from an

excitation viewpoint than the compensator that has a notch at 2 rads/sec. In Figure 9.74, we show

the cumulative frequency-domain error bounding function, Ecumf, Nn(O_k ), and the actual error

magnitude, IEcumf, Nn(O_k)l, for n=2500 (314.16 sees.). The large peak in this figure is due to the

poor compensator (from an excitation viewpoint) and the effects of the disturbance. At higher

frequencies, we can still see visages of the smooth a priori bounding function that was used to

initialize the frequency-domain bounding method. In Figure 9.75, we show the bounding function

Asun(eJO_k T) yielded by the robust estimator along with Au(eJ°_kT). For this example, the

modification of Eqn. (9.6.2) has no effect. From Figure 9.75, we see how that the uncertainty

bounding function is larger than unity for all frequencies greater than about 1 rad/sec. Clearly, this

bounding function is not very useful for increasing the bandwidth of the system.
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Table9.13: Simulation9.6.3- Case4, with aDisturbance,without aProbingSignal.
TrueContinuous-timeParameters,_ = 0.8andcon = 1 rad/sec.

(* denotes no compensator update)

Time

Index
n

Continuous-time
Parameter Estimates

100
200
300
400

500
600
700
800
900

1000
1100
1200

1300
1400
1500
1600
1700
1800

1900
2000
2100

2200
2300
2400
2500

Time Computed
t Compensator

(sees.) Gain
0 0.13292

I 12.57 0.13292 *

25,13 0.05843 *
37.70 0.05849 *

50.27 0.06017 *
62.83 0.06839 *
75.40 0.06578 *

I 87.96 I 0.06578 *
100.53 0.06578 *
113.10 0.06578 *
125.66 0.05804 *

138.23 0.05730 *
150.80 0.05468 *

I 163.36 0.05468 * ,
175.93 0.05468 *

188.50 0.05468 *
201.06 0.05468 *
213.63 0.05468 *
226.20 0.05538 *

I 238.76 I 0.05538 *
251.33 0.05868 *
263.89 0.05868 *

I 276,46 I 0.05868 * I
289.03 0.05673 *

I 301.59 0.05673 *
314.16 0.05673 *

0.200
0.20 2.0
0.20
0.20
0.26
0.26
0.38
0.38
0.38
0.38
0.44
0.56
0.68

0.68
0.68
0.68
0.68

0.68
0.68
0.68
0.62
0.62
0,62
0.62
0,62

0.62

2.0
2.0
1.8

1.8
1.9
1.9
1.9
1.9

• 1.8
1.8
1.5
1.5
1.5
1.5
1.5
1.5
1.5

1.5
1.5

1.5
. 1.5

1.5
1.5

1.5

Continuous-time
Bandwidth

I (rads/sec.)
1.13
1.13
1.13
1.13
1.13
1.13
1.13
1.13
1.13
1.13
1.13

1.13
1.13
1.13
1.13
1.13
1.13
1.13
1.13

1.13
1.13
1.13

1.13
1.13
1.13

1.13
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Figure 9.73: Tracking Error, et[n] - r[n] - y[n], for Case 4, Without Probing Signal.
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Figure 9.74: IEcumf, Nn(0_k)l and Ecumf, Nn(_t_k ) for n=2500, Case 4, Without Probing Signal.
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Simulation 9.6.4: Case 4, with a Disturbance and a Probing Signal

In this simulation, we use the probing signal strategy that was described in Subsection 9.6.5.

A time history of the simulation is presented in Table 9.14. From this table we see that the

frequency-domain parameter estimator is not able to find the true parameters of the nominal plant;

however, it is able to f'md the correct value of _--0.8. This partial knowledge combined with the

frequency-domain bounding information allows the adaptive system to increase the closed-loop

bandwidth from the initial value of 1.13 rads/sec to 2.44 rads/sec. As can be seen from the table,

the first 1000 sample times of the probing signal result in no increase in the closed-loop bandwidth.

The probing signal is updated at n=1000, that is, a new compensator gain and uncertainty bounding

function are used in Eqn. (9.6.3). This updated probing signal, which is again updated at n=2000,

results in the bandwidth increase at n=2200. Since the target closed-loop bandwidth is not reached,

the probing signal is not turned off and continues to disturb the system until the end of the

simulation. This performance is not very impressive, but the understanding that we gain from this

simulation provides clues for making improvements in our probing signal strategy.

In Figure 9.76, we show the probing signal v[n]. This signal is updated at n=1000 (125.66
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secs.)andn=2000(251.33secs.).Thetrackingerroris shownin Figure9.77,wheretheeffectsof
theprobingsignalareagainapparent.Since the probing signal overwhelms the reference signal in

this example, we cannot observe any kind of command following performance. However, for

times greater than n=2200 (276.46 secs.), when the compensator is updated, the system seems to

do a better job of rejecting the probing signal. To understand the poor performance of this

simulation we must consider our frequency-domain results.

In Figure 9.78, we show the cumulative frequency-domain error bounding function,

Ecumf,Nn(cok ), and the actual error magnitude, IEcumf, Nn(cok )1, for n=2500 (314.16 secs.). We

see how the probing signal has provided accurate information for frequencies below 12.5 rads/sec.

However, the robust estimator has not been able to learn any information about the plant for

frequencies greater than 12.5 rads/sec. For these frequencies the cumulative frequency-domain

estimate is still equal to the initial value. So, for frequencies above 12.5 rads/sec, the cumulative

frequency-domain estimate, at n=2500 (314.16 sees.) is equal to the frequency response of the

nominal model for _--0.2 and ¢0n=2 rads/sec. When the parameter estimator performs its

frequency-domain fit to the cumulative frequency-domain estimate it sees no peak but the erroneous

information at high frequencies results in a large error for the con estimate. This helps explain the

fact that the frequency-domain parameter estimator correctly estimates _ to be 0.8 but yields a

grossly incorrect value of con=2 rads/sec instead of the true value of 1 rad/sec. One solution to this

problem would be to actually have the probing signal excite the true plant at high frequencies, thus

enabling the frequency-domain estimator to perform better. This would help us in the example of

this simulation, because the structured uncertainty is large at high frequencies. However, this

increased excitation approach will result in a larger probing signal that will saturate the plant input

in this simulation. If the plant input signal saturates, then some frequency components of the

probing signal will be reduced resulting in insufficient excitation at those frequencies.

In Figure 9.79, we show the bounding function _'sun(ej°_ T) yielded by the robust

estimator along with Au(eJ°_T). For this example, the modification of Eqn. (9.6.2) has no effect.

Comparing Figures 9.75 and 9.79, we see that the probing signal has helped greatly to reduce the

uncertainty bounding function, particularly in the low-frequency range. From Figure 9.79, it can

be shown that it is the large values of the uncertainty bounding function at high frequencies that

limit the bandwidth of the system. The probing signal must be extended further into the high
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frequencyrangeto obtainthetargetclosed-loopbandwidthin thisexample.

A Note for the OLrious Reader

The perceptive reader will notice that the cumulative frequency-domain bounding function is

updated for frequencies greater than 12.5 rads/sec in Simulation 9.6.3 (no probing signal) but is

not updated in this frequency range in Simulation 9.6.4 (with a probing signal). Since the

reference signal r[n] is the same in both simulations, this is a curious result. The author believes

that in Simulation 9.6.4, the mild saturation that occurs at the plant input is the cause of this

phenomenon. As can be seen from Figure 9.74, for frequencies greater than 12.5 rads/sec, the

improvement in the cumulative frequency-domain error bounding function is very small. That is,

the reference signal provides just enough signal to learn something at these high frequencies in the

no probing signal case. In the probing signal case, a small amount of saturation occurs at the plant

input, thereby reducing the richness of the reference signal enough so that no updating occurs at

high frequencies. To test this theory, the reference signal was increased slightly in the probing

signal case and it was indeed observed that some updating then occtm'ed for frequencies greater

than 12.5 rads/sec.
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Table9.14: Simulation9.6.4- Case4, with aDisturbanceandaProbingSignal.
TrueContinuous-timeParameters,_= 0.8andton = 1rad/sec.

(* denotesnocompensatorupdate)

Time

Index

n
0

100
200
300
400
5OO
600
700

800
900

1000

1100
1200
1300
1400
1500

1600
1700
1800
1900

2000
2100
2200
2300
2400

2500

Time

t

I (sees.)
0

12.57

25.13
37.70
50.27

62.83
75.40
87.96

I 100.53
113.10
125.66
138,23
150.80

163.36
175.93

I 188.50
201,06

i 213.63

226.20
238.76

I 251.33
263.89
276.46

I 289.03
I 301.59
I 314.16

Computed
Compensator

Gain

0,13292
0.07629 *

I 0.06486 *
0.05558 *
0.04759 *
0.05739 *
0.05298 *

I 0.05618 *
I 0,05618 *

0,04639 *
I 0.04639 *
I 0.07299 *

I 0,12444*
0.12444*
0.12444 *
0,12444*
Q.12444*
0,12444 *

I 0,12444 *
I 0,12444 *

0,12444 *
0.12444 *
0.26425

I 0.26425 *
I 0.26425 *
I 0.26425 *

Continuous-time
Parameter Estimates

0.20
0.20 2.0

Continuous-time
Bandwidth

(rads/sec.)
1.13
1.13

0.26 1.9 1.13
0.32 1.9 1.13
0.32
0.38

.44

0.50
0.50

0.80

1.9
1.9
1.8

1.8
1.8
2.0

2.0 I0,80
0,80
0.80
0.80
0.80

I 0,80
0.80

I 0.80
0.80

i 0.80
• 0.80

0.80

I 2,0
2.0
2,0
2.0

2.0
2.0
2.0

2.0
2.0

. 2.0
2.0
2.0
2.0
2.0

0.80
0.80
0.80

0.80 I 2.0

1.13
1.13
1.13

1.13
1.13
1.13

1,13
1,13
1.13
1,13
1.13

1,13
1.13
1.13

1.13
1.13
2.44

2.44
2.44
2.44

The probing signal never turns off in this simulation.
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Figure 9.76: Probing Signal v[n] for Case 4 Simulation.
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Figure 9.77: Tracking Error, et[n ] = r[n] - y[n], for Case 4, With Probing Signal.
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9.6.5 Conclusion of Closed-loop Simulation Subsection

In this subsection, we have studied the properties of the robust estimator in a closed-loop

scenario. We summarize our conclusions concerning the performance of the robust adaptive

control system that uses the robust estimator.

1) For Case 2 (4--0.2 and ton=2 rads/sec.) with no probing signal, the system improves the

nominal bandwidth some but not as much as the target value of 5 rads/sec.

2) For Case 2 (4--0.2 and ¢On=2 rads/sec.) with a probing signal, the system quickly improves

the nominal bandwidth to the target value of 5 rads/sec., at the expense of greatly disturbing the

system for the period of identification.

3) For Case 4 (4--0.8 and _n=l rad/sec.) with no probing signal, the system cannot improve

the nominal bandwidth.

4) For Case 4 (4--0.8 and ¢On=1 rad/sec.) with a probing signal, the system improves the

bandwidth some, but not as much as the target value of 5 rads/sec. The probing signal

continues to greatly disturb the system throughout the simulation.

As previously mentioned for 4) above, the problem was that the probing signal wasn't rich enough

for frequencies that are greater than 12.5 rads/sec. These simulations show us that, for some

examples, the robust adaptive control system can increase the bandwidth without the probing signal

while for other examples a probing signal must be introduced. Alternative probing signal strategies

that result in a longer identification time, but that disturb the system much less, were discussed in

Section 7.4.4. We reserve our more global conclusions for the final section of this chapter.

9.7 Conclusions

In this chapter, we have considered a non-trivial plant example and shown how the robust

estimator can be used in open-loop and closed-loop situations to identify the plant. The bottom line

is that a robust adaptive control system that uses the robust estimator can increase the closed-loop

bandwidth and, hence, improve the performance of a system under the fight excitation conditions.

In some situations the reference signal may supply sufficient excitation to increase the bandwidth at

a desired rate but in other situations a probing signal must be added to achieve a target closed-loop

bandwidth within a certain amount of time. For hard identification problems, the required

excitation signals will be large if the plant is to be identified in a short amount of time. For

example, the problem of identifying the plant transfer function of Case 4 in the region near the
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targetclosed-loopbandwidthof 5 rads/sec.,is difficult sincetheplanttransferfunctionhasrolled
off considerablybythis frequency.In anyevent,therobustadaptivecontrolsystemusingthe

robustestimatorwill provideimprovedperformancewhentheplantinput signalis rich enough.

When the plant input is not rich, then the robust adaptive controller simply becomes the best control

system that we could design (using our design method) given the current state of our plant

knowledge.

The closed-loop results of this chapter were found using our pragmatic fix of not letting the

uncertainty bounding function become less than the a priori bounding function on the unstructured

uncertainty. If the robust uncertainty bounding function 2isun(eJ°_k T) of Subsection 5.6.3 had

been used instead, then the closed-loop bandwidths attained by the adaptive control system would

have been smaller. This is because 21sun(eJOk T) is more conservative than the uncertainty

bounding function that was used in this chapter.

A final issue that we mention is the large computational burden of the robust estimator. As

was discussed in Section 6.7, one of the major components of this computational burden is the

computation of the error bounding function of Eqn. (5.2.4). As an example, consider the

closed-loop simulations of this chapter where M-200 and N=1000. At every sample time, the sum

of Eqn. (5.2.4) has about 200 terms and this sum must be computed at about N/2=500 frequency

points. So, for Eqn. (5.2.4) alone, we must perform the operations of subtraction and

multiplication and addition, 100,000 times each. Simulation 9.6.1, which was 2500 sampling

periods in length, required about 12 minutes of CPU time on a Cyber 205 supercomputer. Since

the simulation time scale runs to 314 secs., we see that the Cyber 205 is too slow, for real-time

control, by a factor of 2!
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CHAPTER 10.

CONCLUSIONS AND FUTURE RESEARCH

10.1 Conclusions

In this thesis, we have developed a new method for identifying a partially known plant, in

the presence of unmodeled dynamics and an unmeasurable disturbance. Our entire development

was motivated by the need to provide identification guarantees in a robust adaptive control system.

The robust estimator was developed to provide: 1) a nominal plant model, and 2) a

frequency-domain bounding function on the modeling error. The nominal plant model is required

because current control-law design methodologies require such a finite-dimensional nominal model.

In the future, new control-law design methodologies may not require an explicit nominal model.

The frequency-domain bounding function on the modeling error is required for the

frequency-domain stability-robustness tests. These tests allow us to guarantee that the nominal

closed-loop control system is robustly stable to the modeling error. Next, we summarize the major

results of the thesis.

In Chapter 2, we developed several new signal processing theorems. In particular, we found

a way to bound the effects of using finite-length data in frequency-domain estimation. We also

found a time-domain bound on the output of a system, using a magnitude bounding function on the

frequency response of the system. This result was based on the work of Orlicki {14]. In Chapter

3, we stated the robust estimation problem. First, we started with a set of assumptions concerning

the continuous-time plant and disturbance. Then, an analogous set of assumptions was developed

in discrete-time using the original continuous-time assumptions. In this way, we tried to remain

faithful to our goal of controlling a continuous-time plant. The robust estimator problem was then

stated in discrete-time.

Given the statement of the robust estimation problem, we investigated two approaches for

providing parameter estimates for the nominal plant model, one using time-domain methods and

one using frequency-domain methods. In Chapter 4, we developed a dead-zone based parameter

estimator that uses time-domain methods and in Chapter 5, we presented a frequency-domain

method for computing parameter estimates. In the simulations, the frequency-domain parameter

estimator worked much better than did the dead-zone based parameter estimator. In Chapter 5, we

also developed the frequency-domain method for bounding the modeling uncertainty. The

pragmatic design choices for the methods of Chapters 4 and 5 were addressed in a closed-loop

adaptive control context, in Chapter 6.

Having completed the development of the robust estimator itself, in Chapter 7 we addressed

the more global problem of robust adaptive control. We developed a simple adaptive control
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systemthatusestherobust estimator as a component. In addition, the issue of adding probing

signals to enhance identification was discussed. Since the performance of the robust estimator was

not apparent from its development, we performed extensive simulations in order to understand its

properties.

In Chapter 8, some of the basic building blocks that are used in the time-domain parameter

estimator and the frequency-domain bounding method, were simulated and analyzed. This

understanding enabled us to provide explanations of the more complex simulations that were

presented in Chapter 9. The robust estimator was simulated in both open-loop and closed-loop

situations in Chapter 9. The overall conclusion is that when the plant input signal is rich enough,

the robust estimator can be used in a robust adaptive control system to provide significant

performance increases, as measured by increases in the bandwidth of the system. When the plant

input signal isn't inherently rich, the designer must face the tradeoff of adding a probing signal that

enhances identification but disturbs the system. The results of this thesis have demonstrated that a

robust estimator based adaptive control system can provide useful performance increases for

non-trivial plant examples that have have unmodeled dynamics and an unmeasurable disturbance.

10.2 Directions for Future Research

In this section, we will discuss areas for future research on the problem of robust adaptive

control. There are several unfinished issues concerning the development of a robust adaptive

control system that uses the robust estimator.

10.2.1 Robust Control Methods

The robust adaptive control scheme that was discussed in Chapter 3 and shown in Figure

3.4, requires a control-law design method that can be implemented in an on-line manner. That is,

we require a completely automated robust control design methodology that can use the information

from the robust estimator to yield a system that is robustly stable to the effects of the modeling

uncertainty. Currently, there exist robust control design methods, such as the LQG/LTR

methodology [2], that can be used in an off-line manner to achieve robust control designs.

However, the author is not aware of any methods that do this in a completely automated way. So,

as a fin'st step, an automated robust control design methodology must be developed.

As a second issue for robust control research, we suggest the development of a robust

control design method that is performed entirely in the frequency-domain. In the development of

the frequency-domain bounding method, we had to add a term to account for the difference

between the frequency response of the nominal model and the cumulative frequency-domain
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estimate.If wedidn't needto use a nominal model for control design but worked directly with the

frequency-domain estimate, then we wouldn't have to introduce this extra term that adds to the

conservativeness of our bounding function.

10.2.2 Probing Si_al Reouirements

The issue of probing signal requirements was addressed in Chapter 7 but work remains to be

done in this area. In Chapter 7, we provided insight as to what the excitation requirements of the

robust estimator are. However, the issue of how to choose the probing signal requires additional

study. In particular, the following questions require further examination.

1) What kind of tradeoff should be made between:

a) enhancing identification now via a probing signal (leading to better control performance

later), and

b) disturbing the system with such a probing signal?

2) How should we determine when to introduce or take away a probing signal?

3) How can we monitor the current richness of the plant input signal and use this knowledge in

our choice of a probing signal?

There has been considerable literature on "optimal inputs" for identification, see Mehra [41].

However, in the specific context of an adaptive conlroller that uses the robust estimator, work

remains to be done.

10.2.3 Treatment of Unstable Plants

One of the starting assumptions for the development of the robust estimator was the

assumption that the true plant was stable. This assumption is required by the frequency-domain

estimation method. The plant has to be stable so that the most recent plant input data, which

determines the DFT of the input signal, has the strongest effect on the most recent plant output data,

which determines the DFT of the output signal. If the plant is unstable, it is the data from the

distant past that most strongly influences the current value of the plant output. In this case, the

frequency-domain estimate based on finite-length DlZTs would not yield any useful information.

One solution to this problem is to identify the closed-loop transfer function and then use this

estimate to infer an estimate of the true plant transfer function. For example, the true closed-loop

transfer function is given by

Tel,true(Z) = Gtrue(Z) K(z) / ( 1 + Gtrue(Z) K(z) ), (10.2.1)

so we find
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Gtrue(Z)= Tcl,true(Z)/ [ K(z) ( 1 - Tcl,true(Z ) ) ]. (10.2.2)

Thus, by using the robust estimator to estimate the closed-loop transfer function, which we know

is stable by our choice of compensator, we can learn about the possibly unstable true plant via Eqn.

(10.2.2). However, to learn anything, the. additive error bound on Tcl,true(C jc°T) must be small

enough so that the denominator of Eqn. (10.2.2) cannot be zero. In this indirect way, we can still

use the robust estimator to identify an unstable plant.

10.2,4 Treatment of Slowly Time-varying Plants

The results of this thesis were derived assuming that the plant was linear and time-invariant,

that is, we assumed that the plant parameters were constant. In practice, a plant may have slowly

time-varying parameters. Indeed, parameter drift is one reason for using adaptive control. To

apply the results of this thesis to slowly time-varying plants, several changes must be made. We

sketch some possible approaches to this time-varying problem.

The part of the robust estimator that is most directly affected by this slowly time-varying

problem is the updating of the cumulative frequency-domain bounding function. In Section 5.3,

we set the cumulative frequency-domain bounding function to the smallest value of the

frequency-domain bounding function that was observed since time zero. Thus, the cumulative

bounding function could have values, at certain frequencies, that were found from data of the

distant past. A question for future researches would be how to use knowledge of the maximum

rate of change of the plant parameters to discount the past values of the frequency-domain bounding

function. One could add an additional error term that increases as a frequency-domain bounding

function (for a given time) becomes more and more outdated.

10.3 Some Parting Thoughts on Adaptive Control

In this brief final section of the thesis, we discuss and speculate on the usefulness of the

thesis results as they relate to the robust adaptive control problem. As has been emphasized, the

thesis research was begun with the mandate to develop some sort of guarantees at the identification

stage of a robust adaptive controller, so that we could guarantee stability of the closed-loop system

in the presence of unmodeled dynamics and an unmeasurable disturbance. This guarantee of robust

stability comes at a great price. The robust estimator requires considerable design time and

extensive off-line and on-line calculations. In order to provide some idea of how much work is

required in the robust estimator design process, we will discuss the major design steps. We will

only consider the design of a robust estimator that uses the frequency-domain parameter estimator.
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Thefirstmajorstepin theapplicationof therobustestimatorresultsis thespecificationof the

assumptionsof Section3.6. Recallthattheseassumptionsincludethespecificationof anominal
modelstructurealongwith aboundedparameterspace.In addition,severalboundingfunctions,

somein thefrequency-domainandsomein thetime-domain,arerequired.Giventhis information,

thedesignermustchoosethesamplingperiod,theDFTlength,thememorylengthM, aweighting

functionfor thefrequency-domainparameterestimator,andanappropriatetargetclosed-loop

bandwidth. Figure5.4,which is includedat theendof Chapter5,providesasummaryof theparts

of therobustestimator(usingthefrequency-domainparameterestimator).Most of thecalculations
aredoneon-line. Keyoff-line calculationsare: 1)theanalyticalcomputationof theremainderterm

of Eqn.(5.2.5),and2) thecomputationof thesupremumsof two transferfunctionmagnitudes,at

eachfrequency,as § and00varyover theparameterspaceO {see IHsull in Eqn.(5.6.14)and

IHsu31in Eqn.(5.7.18)}. With all thisoff-line workdone,onecanimplementthecompleterobust

estimator,whichagainis summarized in Figure 5.4. As was discussed in Section 6.7, the robust

estimator requires extensive on-line computations that are dominated by the computation of the

frequency-domain bounding function of Eqn. (5.2.4). In the author's opinion, it is the extensive

on-line calculations that are the biggest deterrent to using the robust estimator. The design

procedure and the robust estimator algorithm itself are complex; however, this is unavoidable

considering the type of guarantees that are provided. We are asking our adaptive control algorithm

to be robust to the effects of unmodeled dynamics and an unmeasurable disturbance, so we expect a

more complex algorithm than the standard "ideal case" model reference adaptive controllers.

In summary, it is the author's opinion that the prohibitively large computational requirements

of the robust estimator make it an unattractive option for adaptive control in the short term.

However, as the computational capabilities of computers increase, the robust estimator will become

increasingly appealing. Thus, the author believes that in the long run we may find that the

extensive computations of the robust estimator are a necessity if we want to obtain a truly robust

adaptive control system.
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Appendix A: Treatment of Infinite Summations

In this appendix, we consider computational methods for evaluating infinite summations.

These summations arise from the frequency-domain folding that occurs when the continuous-time

unmodeled dynamics are translated to discrete-time. First, we present a method for finding a

closed-form expression for an infinite summation, using a result from complex analysis. This

complex analysis approach can only be applied in some cases. So, to handle the cases that can't be

treated using this approach, we will then show how to bound the inf'mite summation by integrating

a function that bounds the summation terms.

Computing an Closed-form Expression Using Complex Analysis

From Theorem 4.1 of Astrom and Wittenmark [31] we know that if FC(s) is a

continuous-time transfer function and F(z) is the correponding pulse transfer function, then

F(ej°T)= 1 _ FC(jo+jrOs). (A.1)
T r=-_

Further, if we choose

FC(s) = 1 / s2 (A.2)

then, from Appendix B of Franklin and PoweU [30], we find that

F(z) = T z / ( z - 1 )2. (A.3)

From Eqns. (A. 1-3) we find that

T e.J°T / (cos(oT) - 1 + j sin(oT) )2 = 1

T

E -l/(o+rOs )2.

r=---_

Taking the magnitude of both sides of this equation and using the fact that

I cos(oT) - 1 + j sin(oT) 12

yields

T / ( 4 sin(oT/2) z ) =

-- cos(oT) 2 - 2 cos(oT) + 1 + sin(oT) 2

= 2 ( 1 - c0s(oT) )

= 4 sin(oT/2) 2

1 _ l/(o+r_s)2.

T r=--_

After some manipulation we find that

(A.4)

(A.5)

(A.6)
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_2/ sin( _ co / cos )2 =

oo

1"=_-oo

1/((c0/c0 s) +r) 2, (A.7)

or letting p = co / cos

oo

_2/sin(_p)2 = _ 1/(p+r) 2.

l"----oo

(A.8)

We can differentiate Eqn. (A.8) to arrive at expressions for infinite summations of higher-order

reciprocal powers. Under certain requirements, which are satisfied by the functions in F_xln. (A.8),

we can differentiate both sides of Eqn. (A.8) yielding

oo

_3 cos( _ p ) / sin( _ p )3 = _ 1 / ( p + r )3. (A.9)

Further, differentiating both sides of Eqn. (A.9) we find that

g4 ( 1 + 2 cos( _ p )2 ) / ( 3 sin( _ p )4 ) = _ 1 1 ( p + r )4. (A.10)

This process can be continued for higher-order reciprocal powers.

A final detail that must be addressed, is the behavior of Eqns. (A.8-10) as p---_0. Since, for

example, the summation in F_xln. (A.8) will have a term lip 2 that approaches infinity as p--_0, we

must consider instead the summation

oo

[_2/sin(_p)2]-[l/p2l= _'_ l/(0+r) 2. (A.11)

Taking the limit as p---_0 on both sides of Eqn. (A. 11) yields after some manipulation

oo

_ 1/r2=_2/3.

r-_

Using a similar process for Eqn. (A. 10) yields

(A.12)
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OO

Z 1/r4 =_4/45.

r-_

In Eqn. (A.9), the terms for negative r cancel the terms for positive r so that we f'md

_ 1/r3=0.

In conclusion, we see that for even reciprocal powers we can use equations like (A.8) and (A.10)

to achieve magnitude bounding in our frequency-folding equations but for odd reciprocal powers

we need another approach. This is because in F-xln. (A.9) the terms are negative for negative r.

(A.13)

(A.14)

Integral Bounding Approach

We will now show how an infinite summation can be bounded by integrating a function that

bounds the terms of the infinite summation. This method can be used to treat the cases of odd

reciprocal powers. The author fL,'st saw this method in [37]. Assuming that n > 1 is a real number

and N > 2 is an integer, it can be shown that

_E_ 1/r n < I (1/xn)dx = l/[(n-1)(N-1)n-1]. (A.15)

r--N N- 1

Now, consider the infinite summation

** N-1 **

_E_ 1/Ip+rl n = _E_ 1/Ip+rl n+ _ [1/Ip +rln + 1/Ir-pln].

r=--** r=--(N-1) r=N

(A.16)

If0_< p_< 1, then

_E_ l/Ip+rl n < _E_

r=N r=N

1/r n (A.17)

and

_E_ 1/Ir-pl n < _E_

_N r=N

1 / ( r - 1 )n. (A.18)
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FromEqns.(A.15-18)weconcludethatif0 < p < 1, n > 1 and N > 3, then

_, N-1

1/Ip+rl n < _ 1/Ip+rl n

r=--** r=--(N-1)

+[1/(n-1)][1/(N-1) n'l + 1/(N-2)n-1 ]. (A.19)

The fast term on the fight-hand side of the above equation must still be computed numerically.

However, the contribution of the infinite summation term on the right-hand side of Eqn. (A. 16) is

bounded by the easily computable term in Eqn. (A. 19) and can now be used to handle the

summations with odd reciprocal powers.
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Appendix B: Impulse Response Bounding Integrals

In this appendix, we derive results for bounding a discrete-time impulse response given a

bounding function on the continuous-time impulse response. From Franklin and PoweU [30,p.62]

we f'md that, if the zero-order hold equivalence is used, then the discrete-time impulse response

gtrue[n] is related to the continuous-time impulse response gtrue(t) as follows.

nT

gtrue[n] = S gtrue(t) dt, Vn. (B.1)

(n-1)T

We assume that gtrue(t) satisfies the magnitude bound of the form of assumption AC1.6 of Chapter

,

Igtrue(t)l < _._ b i t(ri ) e('ai t), for t > 0, (B.2)
i=l

where r i is a positive integer, and b i > 0, a i > 0 (i.e. poles in the open left-half plane), and r i are

known for i=l,.., I0C. Then, we f'md that

nT

Igtrue[n]l < S Igtrue(t)l dt (B.3)

(n-1)T

nT< b i ] t(ri) e(-ai t), for n > 1. (B.4)

i=l (n-1)T

We now consider several cases of Eqn. (B.4).

Case 1. (1"= 0, single-pole case)

nT

b ] e-atdt=(b/a) ( 1 -e-aT)e "aT(n-I), forn> 1.

(n-1)T

From formula 521. of [38] we know that,

r

tr e -at dt = -e -at _ r! tr-P / ( ( r - p )! aP+1 ).

p--0

This formula can be used to evaluate Eqn. (B.4) for more complex cases than r=-0. We have

computed a few cases as follows.

(B.5)

(B.6)
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Case 2. (r = 1, double-pole ease)

nT

b S t e -at dt = (b/a) { [ (l/a) (1 - e'aT)- T ] + [ nT (1 - e -aT) ] } e'aT(n-l),

(n-1)T

forn> 1.

(B.7)

Case 3. (r = 2, triple-pole case)

nT

b j" t2e -at dt = (b/a) {

(n-1)T

[ T 2 - 2T/a + (2/a 2) (1 - e -aT) ]

+ n (2T) [ -T + (l/a) (1 - e -aT) ] + n2T 2 (1 - e -aT) } e'aT(n-1), for n > 1. (B.8)

We note that in all of the above cases, gtrue[n]--0, for n < 0 since gtrue(t) is causal and there is no

feedthrough term in Eqn. (B.2). The above results could also have been derived by f'mding the

inverse z-transform of the zero-order hold equivalent of the bounding function in Eqn. (B.2).
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Appendix C: Summation Equations

In this appendix, we summarize several useful results concerning the evaluation of infinite

and finite series of the geometric type. We will consider several specific cases and then describe

the method for the general case. Under the conditions stated, it can easily be seen that all of the

following series are convergent via the ratio test. See Rudin [39].

Case 1. We define

r_l
S 1 = Z xi,

i--r 0

(C.1)

where r 0 and r1 are positive integers, r0 < r 1, and Ixl < 1 if rl---_**. We find that

S I x - x i+l = xJ = S I - xro + xrl +I.

i=r 0 j--ro+ i

So,

S 1 = ( xr0 - xrl +1 )/( 1 -x).

(C.2)

(C.3)

Special Case la. Ifrl--_*,,, then

S 1 - xro/( I -x).

Special Case lb, If to=O, and rl--->**, then

Sl=l/(1-x).

(C.4)

(C.5)

Case 2.

51
S2 = ___ i x i.

i_---r0
We find that

LI
dS1 = Z i xi-1.

dx i=r 0

(C.6)

(C.7)
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So_

S 2 = x dS1,
dx

and it can be shown that

S2= [ xro (r O-rOx+ x) +xrl +1 (-r I +r I x- I ) ]/( I - x)2.

(C.8)

(C.9)

Special Case 2a. If rl--->0% then

S2=xr0(r0-r0x+x)/( 1 -x) 2.

Special Case 2b. If r0--0, and rl---->**, then

S2=x/(l-x) 2.

(C.10)

(C.11)

Case 3_.

S3 = _ i 2 x i.

i---r0

As in Case 2, we find that

S3=x dS2,.
dx

and it can be shown that

S3 = [ to2 xro + ( -2 r02 + 2 r0 + 1 ) xro +1 + ( r0 - 1 )2 xro+2

- ( r I + 1 )2 xrl+l + ( 2 r12 + 2 r I - I ) xrl +2 - r12 xrl +3 ] / ( I - x )3.

(C.12)

(C.13)

(C.14)

Special Case 3a. If rl--->_o, then

S 3 -- [ r02 xr0 + ( -2 r02 + 2 r0 + 1 ) xr0 +1 + ( r0 - 1 )2 xr0+2 ] / ( 1 - x )3.

Special Case 3b. If to=O, and rl-->_, then

S3=x (1 +x)/(1-x) 3.

(C.15)

(C.16)

General Case, For some integer n > 1, the sum

r 1

S n = _ i(n-l) x i.

i_---r0

(C.17)
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canbefoundby induction,since

Sn -- x (dS(n.1)/dx ),

and S 1 is given by Eqn. (C.3).

(C.18)



Appendix D Page 317

Appendix D: Discrete-time Impulse Response Bounding

In this appendix, we show how to find a bounding function on the impulse response of a

system that is composed of two systems. We assume knowledge of a magnitude bounding

function on each of the impulse responses. We define

n n

h3[n] = hl[n]*h2[n] = _ hl[m] h2[n-m] = _ h2[ p] hi[n-p]. (D.1)

m--0 p=0

where we assume that hl[n] and h2[n ] are causal transfer functions. Further, we assume that the

following magnitude bounding functions are known for h 1 [n] and h2[n],

Ihl[n]l <_ hl[n], Vn (D.2)

Ih2[n]l _< h2[n], Vn (D.3)

where both hl[n] and h2[n] are of the form,

_gi n(ri) Pi n, (D.4)

i=l

where r i is a positive integer, gi > 0, and 0 < Pi < 1. In this appendix, we consider several

different cases of Eqn. (D.4) for hl[n] and h2[n]. In each case, we seek a magnitude bounding

function on h3[n ]. From Eqns. (D.1-3) we find,

Ih3[n]l < h3[n], Vn

where,

n

h3tn] = hltml h2tn-ml.
m--0

(D.5)

(D.6)

Now, we consider some specific cases.

Case 1. (both first-order)

hl[n] = gl Pl n, for n > 0

h2[n] = g2 P2 n, for n > 0.

From Eqn. (D.6) we find,

(D.7)

(D.8)



AppendixD Page318

So,

n

h3[ n] : _ gl Pl m g2 P2 n'm"
m--0

n

h3[n] = { gl g2 _ (Pl/P2) m } P2 n.
m--O

We consider two possibilities in Eqn. (D. 10):

Case la. ( Pl # P2 ) In this case, using Eqn. (C.3) from Appendix C we f'md that

h3[n] = { gl g2 [ ( 1 - (pl/P2) n+l ) / ( 1 - (pl/P2)) ] } p2 n,

or

h3[n] = { gl g2 / ( P2 - Pl ) } ( P2 n+l - Pl n+l )"

We note that a more conservative, but simpler bounding function can be found, as follows,

h3[n] < ( gl g2 / IP2" Pl f) ( max( Pl, P2 ) )n+l.

Case lb. ( Pl -- P2 ) In this case, from Eqn. (D.10),

h3[n] = { gl g2 (n +1) } pl n.

Case 2. (one second-order, one first-order)

hl[n] = gl n pl n, for n > 0

h2[n] ---g2 P2 n, for n > 0.

From Eqn. (D.6) we find,

n

h3[n] = _ gl m pl m g2 P2 n-m.

m--0

So,

D

h3[n] = { gl g2

n

m (pl/P2) m } p2 n.
m_O

We consider two possibilities in Eqn. (D. 18):

(D.9)

(D.10)

(D.11)

(D.12)

(D.13)

(D.14)

(D.15)

(D.16)

(D.17)

(D.18)
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Case 2a. ( Pl # P2 ) In this case, using Eqn. (C.9) from Appendix C we find that

h3[n] = { gl g2 [ (Pl/P2) + (Pl/P2)n+l ( -n + n (pl/P2)- 1 ) ] / ( 1 - (pl/P2) )2] } p2 n,

or

h3[n] = { gl g2 / ( P2" Pl )2} [ Pl P2 n+l + (n'Pl - (n + 1) P2) Pl n+l ]" •

We note that a more conservative, but simpler bounding function can be found, as follows,

h3[n] < { gl g2 (n+l) / ( P2 - Pl )2} ( max( Pl, P2 ) )n+2.

(D.19)

(D.20)

(D.21)

Case 2b. ( Pl = P2 ) In this case, we use L'Hospital's rule twice to find from Eqn. (D.20),

h3[n] = { gl g2 / 2 } n (n+l) pi n,

or

h3[n] = { gl g2 / 2 } ( n2+ n ) pl n.

(D.22)

(D.23)

Case 3. (both second-order)

hl[n] = gl n pl n, for n > 0

h2[n] = g2 n p2 n, for n > 0.

From Eqn. (D.6) we find,

n

h3 In] - _ gl m pl m g2 (n-m) p2 n-m.

m--0

So,

n

h3[n] = gl g2 { [

n n

m (pl/P2) m ] n p2 n- [ _ m2(pl/P2 )m ] p2 n }.

m--0 m--0

We consider two possibilities in Eqn. (D.27):

(D.24)

(D.25)

(D.26)

(D.27)

Case 3a.

much algebra that

h3[n] -- { gl g2 / ( P2 - Pl )3 } [ ( n - 1 ) ( Pl P2 n+2 - Pl n+2 P2 )

+ ( n + 1 ) ( pl n+l p22- p12p2 n+l ) ].

We note that a more conservative but simpler bounding function can be found, as follows,

( Pl # P2 ) In this case, using Eqns. (C.9) and (C.15) from Appendix C we find after

(D.28)
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h3[n] < { gl g2 ( 2 n ) / IP2 - p113 } ( max( Pl, P2 ) )n+3. (D.29)

Case 3b.

or

( Pl = P2 ) In this case, we use L'Hospitars rule three times to find from Eqn. (D.27),

h3[n] = { gl g2/6 } (n-l) n (n+l) pl n, (D.30)

h3[n] = { gl g2/6 } (n 3- n)Pl n. (D.31)
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Appendix E: Proof of Theorems 4.1 and 4.2

In this appendix, we present a complete proof of Theorem 4.1. An outline of this proof has

appeared in the literature in parts, see [17] and [18]. In the following proof of property 1 she

parameter e, which appears in the algorithm and proof in [17,18], does not appear. This parameter

is unnecessary and can be eliminated as we have done in our statement of the algorithm and the

proof. In Eqn. (E.23) we arrive at an expression that depends only on the parameter o_ whereas the

proof of [17,18] arrives at an expression that also includes e. As a note for the reader we observe

that, since the matrix P is symmetric and positive definite, the maximum and minimum singular

values of P are equal to the maximum and minimum eigenvalues of P, respectively. Thus, the

condition number of P is equivalently defined as the ratio of either the singular values or the

eigenvalues.

We conclude the appendix with a proof of Theorem 4.2. This proof is largely the same as

the proof of Theorem 4.1 so only the modifications are mentioned. Goodwin et al. [1] have

,,.... ;,-,,_lv nrnven most of the oroDerties of Theorem 4.2.
jt*,A v ..... a.¢ _. _ _ - -

Proof of Theorem 4.1:

Proof of Property 1: From Eqn. (4.5.5) we recall that

e[n] -- - _f[n-1] T 0_[n-1] + el[n ] = -O[n-1] T ¢_f[n-1] + el[n], where

e"[n]= 0[n]- e 0.

Subtracting 00 from each side of Eqn. (4.5.7) and using Eqn. (E.1) we find that

~ ... n_l]T ""0[n] = 0[n-l] + _rnl Pin-21 0f[n-ll ( - _f[ 0[n-l] + el[n ] ).

1 + _f[n-1] T P[n-2] _f[n-1]

Using the matrix inversion lemma,

(A+B C) -1 --A -1 -A -1B (I+CA -1B)I CA-I,

and Eqn. (4.5.8) which we repeat here for convenience,

Pin-l] = P[n-2] - •urn1Prn-21 T Pin-2] ,

1 +  f[n-1] T P[n-2]  f[n-1]

(E.1)

(E.2)

(E.3)

(E.4)

(E.5)
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we find that

p[n-1] -1 =p[n-2] -1 + 'urn] ¢ -f[aa.zl_ffa:11T

1 + (1-_[n]) el[n-l] T P[n-2] Cffn-1] (E.6)

Using Eqns. (E.3) and (E.5) it can be shown that

0_n] = Pin-l] P[n-2] -1 0"[n-l] + "0In] Pin-2] 0_1[nl .

1 + 0f[n-1] T P[n-2] 0f[n-1] (E.7)

We now define the candidate Lyapunov function,

V[n] = 0'[n] T P[n-1] -1 0N[n], (E.8)

which is non-negative since P is symmetric and positive definite. Using Eqns. (E.7-8) we

compute,

V[n]- V[n-1] = (0'[n] - 0_[n-1] )T p[n_2]-i 0"[n-l]

+ _ornl 0'rnlT Pin-l] -1 Pin-2] 0_1 n_]._.

1 + 0fin-l] T P[n-2] 0f[n-1] (E.9)

Using Eqns. (4.5.7) and (E.7) in (E.9) yields

V[n] - V[n-1] = { x)[n] / ( 1 + 0f[n-1] T P[n-2] 0f[n-1] ) } { 0fin-l] T 0'In-l] e[n]

+ 0'[n-l] T 0f[n-1] el[n] + __T Pin-21 P[n-l1-1 P[n-2l 0f[n-H elLn_.l2 }.

1 + 0fin-l] T P[n-2] 0f[n-1]

Eqns. (E.1) and (E.6) are then used to find

V[n] - V[n-1] = { aJ[n] / ( 1 + 0f[n-1] T P[n-2] 0f[n-1] ) } { ( el[n] - e[n] ) ( el[n] + e[n] )

+ _ nfLo_:_UT Pin-21 _f[B_=j.]_gl n[._2

1 + 0f[n-1] T P[n-2] 0f[n-1]

(E.10)
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+ _rrflZ..(.._f[naLlT Prn-21 O_2el[nl 2 }

{ 1 + el[n-l] T P[n-2] el[n-l] } { 1 + (1-'o[n]) Cf[n-l] T P[n-2] Of[n-l] }

This reduces to

(E.11)

V[n] - V[n-1] = { _[n] / ( 1 + _f[n-1] T P[n-2] _f[n-1] ) } { el[n] 2- e[n] 2

+ _f___J2 T Pin-2] 0_1[n]2 }.

1 + (1-_[n]) Cf[n-1] T P[n-2] Cf[n-1] (E.12)

We reduce Eqn. (E.12) further to find

V[n] - V[n-1] = { _[n] / ( 1 + _f[n-1] T P[n-2] _f[n-1] ) } •

{ 1 + 0ntq2_ T Pin-21 0fin-l]

1 + (1-'o[n]) Cf[n-1] L P[n-2] Cf[n-ll

el[n] 2 - e[n] 2 }.

We will show that the right-hand side of Eqn. (E.13) is non-positive. However, we must

first make some observations. We observe from the properties of the deadzone function 'f of Eqn.

(4.5.6), the definition of _[n] and Eqns. (4.5.10-11) that

1 < 1 + Ct"[.O.:_ T Prn-21 0ffn-1] < ....k_l = [32.

1 + (1-ag[n]) efT[n-l] P[n-2] Cf[n-1] 1 - o_ (E.14)

u

Since el[n ] is a bound on lel[n]l, we use Eqns. (E.13-14) to find

V[n] - V[n-1] < { "o[n] / ( 1 + 0fin-l] T P[n-2] _f[n-1] ) } { 132_l[n] 2 - e[n] 2 }. (E.15)

We observe that if le[n]l > [3 el[n], then

If{ [3 el[n], e[n] } I = I le[n]l - [3 el[n] I (E.16)

=, If{ [3 el[n], e[n] } I le[n]l = 113 e'-q[n] le[n]l - e[n] 2 I (E.17)

=_ - f{ 13e_[n], e[n] } e[n] = 13el[n] le[n]l-e[n] 2, (E.18)

where we have used the properties of the deadzone to determine the signs in Eqn. (E. 18). Further,

if le[n]l > 13el[n], then
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1_el[n] le[n]l - e[n]2 > [32 _[n] 2- e[n] 2. (E.19)

Thus, if le[n]l > 15el[n], then

- f{ 13el[n], e[n] } e[n] > 152_[n]2_ e[n]2. (E.20)

Multiplying both sides of Eqn. (E.20) by the non-negative number f{ 15 el[n], e[n] }/e[n] we find

that

- f{ 13el[n ], e[n] }2 > ( f{ 15el[n], e[n] } / e[n] ) ( 152_l[n] 2- e[n] 2 ) (E.21)

for all e[n]. If le[n]l < 15el[n] then both sides of the above inequality are zero. From Eqns.

(4.5.9-10) we f'md that

_[n] = 0t f{ 15el[n], e[n] } / e[n]. (E.22)

Combining Eqns. (E.15) and (E.22) and then using Eqn. (E.21) we find that

¥[n] - V[n-1] < - o_f{ 15el[n], e[n] }2 / ( 1 + _f[n-1] T Pin-2] _f[n-1] ). (E.23)

From Eqn. (E.23) we conclude that the non-negative function V[n] is non-increasing and hence

0[n] T P[n-1] "1 0'[n] < g[n-1] T Pin-2] -1 gin-l]. (E.24)

From Eqn. (E.6) we find

P[n] -1 = P[n-1] "1 + a_rn+ll ¢_f_T

1 + (1-_[n+1]) _f[n] T P[n-1] Cf[n] (E.25)

where we note that aJ[n+l] is non-negative and always less than unity so the second term on the

right-hand side is positive semi-definite. From (E.25) and the fact that P is symmetric and positive

definite, we f'md that

Omin{P[n]-l} > _min{P[n-1]'l} _> crmin{P[-1]-l}, (E.26)

where Crmin{- } denotes the minimum singular value of a matrix and later we will use Omax{*} to

denote the maximum singular value of a matrix. Using Eqn. (E.26) and then (E.24) we find

_min{P[-1]-l} IIO[n] II2 < Omin{P[n-1]-I } IIO[n] II2

< 0'[n] T P[n-1] "1 0"[n]

< 0[0] T P[-1] -1 0"[0]

(E.27)

(E.28)

(E.29)
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< Omax{P[-1]'l } II0_[0]I12. (E.30)

Therefore,

IIO'[n] II2 _< _:{P[-I]} II0[01 II2, (E.31)

and hence

II0'[n]ll < q le{P[-1]} II 0"[0]11, (E.32)

where

K:{P[-1] } = Omax{P[-1]} / Omin{P[-1]} - Omax{P[-1]-I } / Omin{P[-1]-I }. (E.33)

This establishes property 1 of Theorem 4.1. The result stated in Remark 2 of Chapter 4 follows

directly using the initial time of n-2 instead of 0 in Eqns. (E.27-32).

Proof of ProPerty 2: Using Eqn. (E.23) and summing from 1 to N yields

N

V[N]- V[0] < - _af{ 13_l[n], e[n ] }2/( 1 +¢pf[n-1]Tp[n-2] Of[n-I]).
n=l

Since we know that

(E.34)

- ( V[N] - V[0] ) < -0, VN (E.35)

we conclude that the summation of positive terms in Eqn. (E.34) is finite for all N. This implies

that

lim ff B elrnl, ernl 12..___ = O,

n--*** 1 + _f[n-l] T P[n-2] q_f[n-1] (E.36)

which establishes property 2.

Proof of Property 3: For this part of the proof we must first develop some preliminary results.

Since

ff g el[nl, efnl 12

1 + 00fin-l] T P[n-2] 0of[n-l]

_ nt4..a_ T Pfn-21 ,frn-ll _ ff g _1[ nl. ernl 12,

( 1 + 41f[n-1] T P[n-2] O0f[n-1] )2

we find from Eqn. (E.34-5) that for all N,

(E.37)
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N

__T_tq-n-ll 3 fl .13eqrol, ernl }2

n=l ( 1 + Of[n-l] T Pin-2] Of[n-l] )2

N N

fl B elrnl, ernl 12 +

n=l ( 1 + 0f[n-1] T P[n-2] 0f[n-1] )2 n=l

_t.fa=!.lT Prn-210ffn-ll f[ 13_lrnl. ernl !2

( 1 + 0f[n-1] T P[n-2] 0f[n-1] )2

Further, from Eqn. (E.34) we find

N N

fl" B _rnl. ernl 12.
- .

n=l ( 1 + 0f[n-1] T Pin-2] 0f[n-1] )2 n=l

f{ B elm1-ernl }2

1 + 0f[n-1] T P[n-2] 0fin-l]

m <_ oo.

oo.

(E.38)

(E.39)

We conclude from Eqns. (E.38-9) that for all N,

N

_T Prn-21 _dn-ll f[ B _1 rnl- ernl }2

n=l ( 1 + 0f[n-1] T Pin-2] 0f[n-1] )2 (E.40)

This implies that

lim _T Prn-21 0frn-ll fIB _rnl. ernl 12 = 0.

n-.->** ( 1 + 0f[n-l] T P[n-2] 0f[n-l] )2 (E.41)

Now, from Eqn. (4.5.7),

II0[nl - 0'[n-l]ll 2 = _[.._2_T p[n_212_tq-n_11 ernl 2.

( 1 + 0f[n-l] T P[n-2] 0f[n-1] )2

Using the fact that

_[n] 2 e[n] 2 = ot2 f{ 15el[n], e[n] }2

and, from Eqn. (E.26), the fact that

_max{P[n] } < ¢rmax{P[-1] },

we can show that

(E.42)

(E.43)

(E.44)
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IIO_n]- 0'[n-l] II2 < _ff__Ll T Prn-210(n-l] f_ B _[n]. ernl 12 ( cx20max{P[-1]} ).

( 1 + _f[n-1] T Pin-2] d0f[n-1] )2 (E.45)

Eqns. (E.41) and (E.45) allow us to conclude that

lim

n----)_

and hence

II §[n-1][12=0, (E.46)

lira II0[n]- 6[n-1]ll=0, (E.47)

n---),_

which establishes property 3.

Preparation for the Proof of Theorem 4.2:

Before proceeding with the basic proof, we will fin'st present two lemmas that will be used in

the proof of Theorem 4.2. Both of the following lemmas have been stated by Goodwin et al. See

[17] and [18] for the statements of Lemmas 1 and 2, respectively.

Lemma 1: The convergence results of properties 2 and 3 of Theorem 4.1 (or 4.2) hold for

algorithms that modify the P matrix if the modification algorithm satisfies the following properties:

1) P is increased at modification, that is, Pin-l] > Pin-l], where P[n-1] is the least-squares

projection matrix.

2) P has an upper bound, that is, Omax{P[n-1] } is bounded.

4.1, we see that

_'[n]T p'[n_l]-i 0N[n]

m

Substituting P[n-1] for P[n-1] up until Eqn. (E.24) in the proof of property i of Theorem

< O[n-1] T P[n-2] -1 0In-l]

- o_f{ _ el[n], e[n] }2 / ( 1 + Cf[n-1] T Pin-2] q_f[n-1] ). (E.48)
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From 1)aboveweknow that

P[n-1]"1 < P[n-1] "1 (E.49)

so that

 En]T PEn-it1 e n] -1 gEn]l. (E.50)

Combining Eqns. (E.48) and (E.50) yields

O[n] T P[n-1] -10[n] _< O[n-1] T P[n-2] -1 e_[n-1]

- o_f{ 13el[n], e[n ] }2/( 1 + _f[n-1]T P[n-2] _f[n-1] ). (E.51)

Using Eqn. (E.51) the proofs of properties 2 and 3 follow exactly the same as in Theorem 4.1 with

the exception of Eqns. (E.44-45). Since Eqn. (E.44) is not necessarily true for the modified

algorithm, we instead write

II0_[n] - 0'[n-l] II2 < A nt-LO.=_T Prn-2! Cft'n-ll fl B elrnl, ernl / 2 ( a2 Crmax{P[n-1]} ),

( 1 + _f[n-1] w P[n-2] _f[n-1] )2 (E.52)

where we know that ¢rmax{P[n-1 ] } is bounded from 2) above. The proof of property 3 can then

be completed.

Lemma 2:

properties:

1) Cmax{P[n-1]} < trace{P[n-1]} = Cl, n > 1.

2)Pin-l] > Pin-l], n> 1.

The modified algorithm defined by the use of Eqns. (4.5.17-19) has the following

(E.53)

(E.54)

Proof: From Eqns. (4.5.17) and (4.5.20) we find that ifx > c 0, then

trace{P[n-1]} = trace{P[n-1]} + c 1 - '_ = x + c 1 - 'r = c 1,

and if "c < Co, then

trace{P[n-1]} = ( Co/X ) trace{P[n-1]} + ( c 1 - c0 ) = co + c 1 - c 0 = c 1.

Further, we know that

(E.55)

(E.56)
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m m

_i{P[n-1]} = _ Li{P[n-1]} -- trace{P[n-1]},
i=l i-1

where cri and _'i denote the singular values and eigenvalues, respectively.

_max{P[n-1]} < trace{P[n-1]}.

This concludes the proof of property 1 of Lemma 2.

We find that

(E.57)

(E.58)

As was shown in the proof of property i of Theorem 4.1, Eqn. (4.5.19) has the property that

P[n-1] < P[n-1]

trace { Pin- 1] } < trace{Pin-I] }.

Now, from Eqn. (4.5.18) we know that

trace{P[-1]} = c 1. (E.61)

Thus, from Eqns. (4.5.17) and (E.60-1) and property 1, we find that

1: < c 1. (E.62)

Using Eqns. (E.62) and (4.5.20) and the fact that c 1 > c 0, we see that

Pin-l] -- k 0 P[n-1] + k 1 I, (E.63)

where

k0= 1 andkl = ((c 1 -x)/m) >0, ifx>c0, and (E.64)

k0=(c0/x)>landk l=((c 1-c0)/m)>0, ifx<c 0. (E.65)

This establishes property 2 of Lemma 2.

(E.59)

(E.60)

Proof of Theorem 4.2; We will not prove the properties of this theorem in order. First, since

Lemma 2 shows that the modified algorithm satisfies the requirements of Lemma 1, we conclude

that properties 2 and 3 of Theorem 4.2 are true. Now, we proceed with the proof of property 1.

Using the results of Lemmas 1 and 2, we f'md from Eqn. (E.51) that

0"[n] T P[n-1] "1 0'[n] < 0"[n-l] T Pin-2] -1 0_[n-1]. (E.66)

This equation is then used to find
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Cmin{P[n-1]-l} IIO'[n] II2

Therefore,

#

_< 0'[n]T P[n-1] "1 0"[n]

_< 0[01T P[-I] -1 0"[01

_< Cmax{P[-l]-l} II0'[0] II2.

(E.67)

(E.68)

(E.69)

IIO[n] II2 _ ( Omax{V[n-1] / Omin{P[-1] } ) II0"[0] II2, (E.70)

and hence

II0_[n]ll < ,/Omax{P[n-1 ]/Omin{P[-1]} II0_0]11. (E.71)

From Eqn. (4.5.18),

train{P[-1]} = c 1/m. (E.72)

Thus, using property 1 of Lemma 1 we find that

II0"[n] II < _ II0[0] II. (E.73)

This completes the proof of Theorem 4.2. The result stated in Remark 4 of Chapter 4 follows

directly using the initial time of n-2 instead of 0 in Eqns. (E.67-71).
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Appendix F: Discrete.time Stability-Robustness Tests

In this appendix, we will develop tests that can be used to guarantee the stability robustness

of a discrete-time closed-loop system. We will state SISO discrete-time versions of the

continuous-time stability-robustness tests developed by Lehtomaki et al. [40]. The following

development parallels that of reference [40].

Consider the system of Figure F. 1. We assume that both the SISO loop transfer function

T(z) and the perturbed loop transfer function 'r(z) have state space representations (A, b, cT) and

(A,, "b, c_r), respectively, so that

T(z) = cT ( zI - A )" 1 b (F. 1)

and the perturbed transfer function

T(z) = c_'T(zI- A,)-I_. (F.2)

Further,we definetheopen and closed-looppolynomials,

_oL(z) = det( zI - A ),

_bCL(Z) = det( zI - A + b cT ).

The polynomials _oL(z) and _cL(z) are def'med analogously for the perturbed transfer function.

The appropriate Nyquist contour D R in the z-plane is shown in Figure F.2 where D R avoids zeros

of _boL(z) on the unit circle by 1/R radius indentions. Lastly, we define T(z,e) as a rational transfer

function that is continuous in z and e for e in [0,1] and for all z in D R.

following conditions:

T(z,0) = T(z)
and

T(z,1) - T(z).

T(z,e) also satisfies the

(F.5)

(F.6)

Theorem F. 1: The polynomial _cL(Z) has no zeros outside the open unit disk if the following

conditions hold:

1) a) _boL(z ) and _OL(Z) have the same number of zeros outside the open unit disk.

b) if _OL(eJC°a T) = 0, then _bOL(eJC°aT)= 0.
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2)

c) ¢cL(z) has no zeros outside the open unit disk (i.e. nominal stability).

1 + T(z,e) _ 0, for all e in [0,1] and for all z • D R with R sufficiently large.

_oof: The proof of Theorem F. 1 is analogous to the proof of the similar continuous-time result.

The discrete-time version of the Nyquist criterion, see Ackermann [32], is used in the proof.

Q.E.D.

SO,

Now, let

"_(z) = T(z) [1 + _(z)]

8(z) = ['_(z) - T(z)] /T(z).

We define a magnitude bounding function on 8(z) on the unit circle. That is,

18(eJC°T)l < A(ejc°T), "v'o_.

Theorem F. 1 can be used to prove the following theorems.

(F.7)

(F.8)

(F.9)

Theorem F.2: The polynomial _cL(z) has no zeros outside the open unit disk if the following

conditions hold:

1) condition 1) of Theorem F.1 holds.

2) I1 +T'l(z)l > I_(z)l, Y'z • D R.

Theorem

1)

2)

3)

F,3; The closed-loop system "F(z) / (1 + "F(z)) has all its poles in the open unit disk if:

a) #oL(z) and _oL(z) have the same number of zeros outside the open unit disk.

b) #eL(Z) has no zeros outside the open unit disk (i.e. nominal stability).

(_OL(e jc0T) _: 0, VC0.

a) I1 + T-l(eJc°T)l > A(eJ°)T), Y'co, or equivalently,

b) IT(e jcoT) / (1 + T(eJC°T))l < 1 / A(eJc°T), Vc0.
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+

/

) > T(z)

Figure F.I: Closed-loop System.

z-plane

/

DR

\

radius= 1/R

radius 1/R

>

Figure F.2: Discrete-time Nyquist Contour.
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